Biologische Untersuchungen

Rheintaler Binnenkanal und Rietaach

Bericht und Datenanhang

Bericht Nr. 1392-B-01 Datum Entwurf: 17.7.2015 Datum Endfassung: 3.9.2015

Impressum

Auftraggeber: Amt für Umwelt und Energie

Lämmlisbrunnenstrasse 54 · CH-9001 St. Gallen

Auftragnehmer: AquaPlus AG

Gotthardstrasse 30 · CH-6300 Zug

Projektleitung: Joachim Hürlimann

Mitarbeiter: Matthias Sturzenegger \cdot Caroline Baumgartner \cdot Nicole Egloff \cdot

Anna Carlevaro

Zitiervorschlag: AQUAPLUS 2015: Biologische Untersuchungen Rheintaler Bin-

nenkanal und Rietaach. Bericht und Datenanhang. Im Auftrag

des Amtes für Umwelt und Energie Kanton St. Gallen. 26 S.

Inhaltsverzeichnis

		Seite
	Zusammenfassung	1
1	Ausgangslage und Auftrag	4
2	Grundlagen und Methoden	4
3	Standort	5
4	Ergebnisse und Diskussion	9
4.1	Äusserer Aspekt	9
4.2	Pflanzlicher Bewuchs	12
4.3	Wasserwirbellose	16
4.4	Vergleich mit früheren Untersuchungen auf Niveau IBCH	23
5	Literaturverzeichnis	26
	ANHANG	
	ANHANG A: Stellendokumentation	29
	ANHANG B: Untersuchungsmethodik	30

Zusammenfassung

Die vorliegende biologische Untersuchung hat gemäss Pflichtenheft vom 19. Dezember 2014 folgende Ziele:

- "Ermittlung des biologischen Zustandes der einzelnen Flussabschnitte und Überprüfung der Einhaltung der "ökologischen Ziele für Gewässer" bzw. der "Anforderungen an die Wasserqualität" gemäss Anhang 1 und Anhang 2 der Gewässerschutzverordnung (GSchV) vom 28. Oktober 1998, soweit biologische Indikatoren betroffen sind.
- Aufzeigen von Veränderungen bezüglich früherer biologischer Untersuchungen und Erfolgskontrolle für realisierte Gewässerschutzmassnahmen.
- Datenerhebung im Rahmen der routinemässigen Fliessgewässer-Überwachung gemäss Konzept 2012."

Der Auftrag wurde an AquaPlus AG vergeben. Die Untersuchungen wurden am 11. und 13. März 2015 durchgeführt.

Rheint. Binnenkanal

Der Rheintaler Binnenkanal wies an allen untersuchten Stellen leichte bis mittlere gewässerökologische Defizite auf. Die Belastung nahm dabei im Fliessverlauf merklich zu. Der Äussere Aspekt war an allen Stellen beeinträchtigt und beim Pflanzlichen Bewuchs sowie den Wasserwirbellosen sind die Einflüsse aus dem Einzugsbegiet feststellbar. Verursacht wird dieser gemäss Gewässerschutzverordnung Anhang 1 und 2 teilweise ungenügende Zustand durch einen Faktorenkomplex. Wichtige Einflussfaktoren dürften sein:

- die schlechte Ökomorphologie (begradigt, geringe Beschattung, Verschlammung der Gewässersohle, weitgehend fehlende Verzahnung mit dem Ufer, fehlende Wasserspiegelbreitenvariabilität, etc.),
- schlechte Anbindung der Seitengewässer und dadurch geringes Wiederbesiedlungspotential,
- die vermutlich häufig auftretenden Trübungen des Wassers (Baustellen, Hochwasserereignisse, Abschwemmungen, Drainage etc.) und
- die diversen stofflichen Einträge (Strassen- und Siedlungsentwässerung, Landwirtschaft, diverse ARA's, Sickerwassereinleitungen etc.).

Die Auswirkungen dieser Einflussfaktoren sind eine Akkumulation von Feinsedimenten im Gewässer (Verschlammung), Ablagerung von allenfalls toxischen Schadstoffen im Gewässer und eine erhöhte Sauerstoffzehrung im Sediment (Abbauprozesse, Eisensulfidbildung). Die Besiedlung der Wasserwirbellosen erfolgt daher weitgehend mit toleranten Arten. Empfindliche Arten wie beispielsweise Steinfliegenlarven können bei diesen Lebensraumbedingungen kaum aufkommen. Eine Besonderheit bildet dabei die Stelle OGB 196 - RBK - Rüthi - Strackacker im revitalisierten Abschnitt. Vermutlich aufgrund der verbreiterten Gewässersohle und vielen strömungsberuhigten Bereichen kommt es zu einer vermehrten Ablagerung von Feinsedimenten (im Vergleich zu 2003). Dies wirkt sich direkt auf die Artenzusammensetzung und damit auf die Beurteilung der Lebensraumqualität aus. Der Vergleich zu den letzten Aufnahmen der Jahre 2003 und

2009 ist zumindest bezüglich der Lebensgemeinschaften der Wasserwirbellosen (IBCH) methodisch bedingt heikel. Wie damals erfüllten aber auch im Jahr 2015 drei der fünf Stellen die ökologischen Ziele gemäss GSchV Anhang 1 nicht.

Rietaach

Die Rietaach wies an allen untersuchten Stellen leichte bis grosse gewässerökologische Defizite auf. Die Belastung nahm dabei im Fliessverlauf merklich zu. Der Äussere Aspekt war an allen Stellen beeinträchtigt, beim Pflanzlichen Bewuchs war keine Veränderung feststelbar und bei den Wasserwirbellosen nimmt die Beeinträchtigung der Lebensgemeinschaft nach der ARA Altstätten deutlich zu. Verursacht wird dieser gemäss Gewässerschutzverordnung Anhang 1 und 2 teilweise ungenügende Zustand durch einen Faktorenkomplex. Wichtige Einflussfaktoren dürften sein:

- die schlechte Ökomorphologie (begradigt, geringe Beschattung, Verschlammung der Gewässersohle, weitgehend fehlende Verzahnung mit dem Ufer, fehlende Wasserspiegelbreitenvariabilität etc.),
- die vermutlich häufig auftretenden Trübungen des Wassers (Baustellen, Hochwasserereignisse, Abschwemmungen, Drainage etc.) und
- die diversen stofflichen Einträge (Strassen- und Siedlungsentwässerung, Landwirtschaft, ARA Altstätten, Sickerwassereinleitungen etc.).

Die Auswirkungen dieser Einflussfaktoren sind eine Akkumulation von Feinsedimenten im Gewässer (Verschlammung), Ablagerung von allenfalls toxischen Schadstoffen im Gewässer und eine erhöhte Sauerstoffzehrung im Sediment (Abbauprozesse, Eisensulfidbildung). Die Besiedlung der Wasserwirbellosen erfolgt daher weitgehend mit toleranten Arten. Empfindliche Arten wie beispielsweise Steinfliegenlarven, können bei diesen Lebensraumbedingungen kaum aufkommen. Im Vergleich zu den letzten Aufnahmen der Jahre 2009 und 2014 ist es an den Stellen OGB 200 - Rietaach - Altstätten - Banriet und OGB 237 - Rietaach - Altstätten - Banriet/unterhalb ARA zu einer deutlichen Verbesserung des IBCH gekommen. An der untersten Stelle OGB 201 - Rietaach - Marbach - Anger ist der IBCH jedoch weiter gesunken. Diese Verschlechterung wird direkt mit der ARA Altstätten in Verbindung gebracht.

Fazit

Beide Gewässer haben mehr Probleme und Lebensraumdefizite im Bereich der Morphologie und der Gewässersohle als in der fliessenden Welle (stofflich). Die häufig vorkommende Trübung beeinträchtigt zwar auch die fliessende Welle (Lichtschwächung ...), die Folgeauswirkungen von Trübungsereignissen auf die Gewässersohle (Ablagerungen, Kolmation, Veränderung des Interstitials, allenfalls toxische Wirkungen...) sind aber deutlich grösser und wirken sich nachhaltig aus. Die Defizite in der Sohle bleiben so längere Zeit bestehen und diese Lebensraumänderungen wirken sich auf die Lebensgemeinschaften aus.

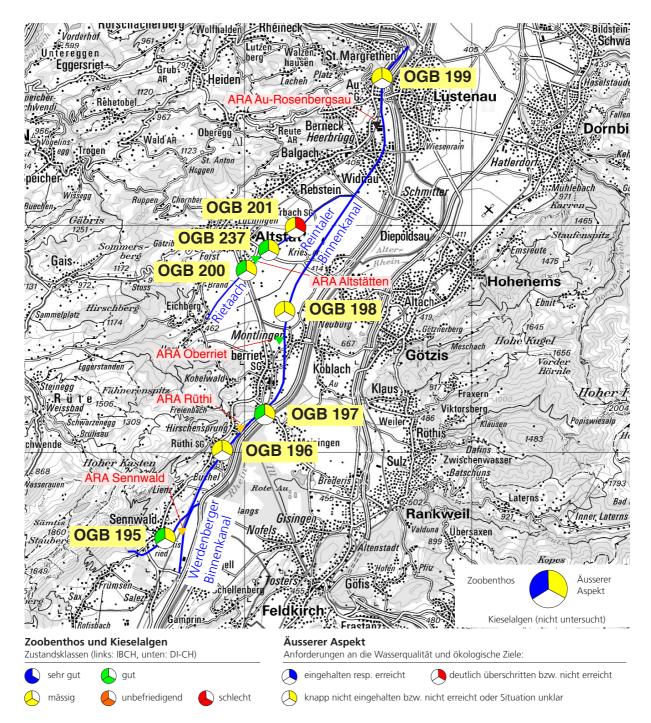


Abb. 1: Einzelbewertung des Äusseren Aspektes und der Wasserwirbellosen (Zoobenthos) an den untersuchten Stellen im Rheintaler Binnenkanal und in der Rietaach anlässlich der Untersuchungen vom 11. und 13. März 2015.

Gewässer	Gemeinde	Ortsbezeichnung	Stellenbezeichnung
Rheintaler Binnenkanal	Sennwald	Mädli	OGB 195
Rheintaler Binnenkanal	Rüthi	Strackacker	OGB 196
Rheintaler Binnenkanal	Oberriet	Güetli	OGB 197
Rheintaler Binnenkanal	Oberriet	Dreier	OGB 198
Rheintaler Binnenkanal	Au	Monstein	OGB 199
Rietaach	Altstätten	Banriet	OGB 200
Rietaach	Altstätten	Banriet/unterhalb ARA	OGB 237
Rietaach	Marbach	Anger	OGB 201

1 Ausgangslage und Auftrag

Ziele

Die biologischen Untersuchungen im Rheintaler Binnenkanal und in der Rietaach wurden vom Amt für Umwelt und Energie des Kantons St. Gallen in Auftrag gegeben. Sie umfassen gemäss Pflichtenheft vom 19. Dezember 2014 folgende Zielsetzungen:

- "Ermittlung des biologischen Zustandes der einzelnen Flussabschnitte und Überprüfung der Einhaltung der "ökologischen Ziele für Gewässer" bzw. der "Anforderungen an die Wasserqualität" gemäss Anhang 1 und Anhang 2 der Gewässerschutzverordnung (GSchV) vom 28. Oktober 1998, soweit biologische Indikatoren betroffen sind.
- Aufzeigen von Veränderungen bezüglich früherer biologischer Untersuchungen und Erfolgskontrolle für realisierte Gewässerschutzmassnahmen.
- Datenerhebung im Rahmen der routinemässigen Fliessgewässer-Überwachung gemäss Konzept 2012."

Die vorliegende Arbeit umfasst den Bericht mit der Darstellung und der Diskussion der Untersuchungsergebnisse 2015 sowie einen Anhang mit der Dokumentation der Untersuchungsstellen.

2 Grundlagen und Methoden

Die Untersuchung stützt sich auf die aktuell im Rheintaler Binnenkanal und der Rietaach am 11., respektive am 13. März 2015 vorgefundenen gewässerökologischen Verhältnisse ab. Die angewandten Methoden entsprechen dem Untersuchungskonzept des Kantons St. Gallen sowie dem Modul-Stufen-Konzept des BAFU. So wurden die Module Äusserer Aspekt Stufe F (BAFU 2007a) und Makrozoobenthos Stufe F (BAFU 2010) angewandt. Im weiteren wurde der pflanzliche Bewuchs (Algen, Moose, Makrophyten) erhoben und das Modul Makrozoobenthos um die Individuendichte und die Bestimmungen tiefer als das Familienniveau ergänzt. An den drei Stellen OGB 197 - RBK - Oberriet - Güetli, OGB 198 - RBK - Oberriet - Dreier und OGB 199 - RBK - Au - Monstein wurden die Probenahmen taucherisch erhoben. Die Kieselalgen wurden beprobt und präpariert. Die Auswertung war nicht im Auftrag vorgesehen, die Proben sind aber bei AquaPlus AG archiviert und stehen für ergänzende Auswertungen nach Modul Kieselalgen (BAFU 2007b) zur Verfügung. Weitere methodische Erläuterungen befinden sich in ANHANG B.

Die Vergleiche mit früheren Aufnahmen stammen aus den Jahren 2003 (AMBIO 2003), 2009 (AQUAPLUS 2009) und 2014 (AQUAPLUS 2014).

3 Standort

In den Abbildungen 3.1, 3.2 und 3.3 sind die Untersuchungsstellen fotographisch respektive kartographisch dargestellt und in Tabelle 3.1 mit Hinweisen zu geografischen Lokalitäten sowie mit physikalischen Feldmesswerten charakterisiert. Der Abfluss betrug am Probenahmetag im Rheintaler Binnenkanal 6.12 m³/s (BAFU Messstation LH 2139 Rheint. Binnenkanal - St. Margrethen) und in der Rietaach 608 l/s (kantonale Messstation HO2401 Rietaach-Altstätten).

Rietaach: OGB 200, Banriet, Aufnahme vom 13. März 2015

Rietaach: OGB 237, Banriet - unterhalb ARA, Aufnahme vom 13. März 2015

Rietaach: OGB 201, Anger, Aufnahme vom 13. März 2015

Vaucheria sp. (Gelbgrünalge)

Abb. 3.1: Fotodokumentation der Untersuchungsstellen in der Rietaach. Untersuchungen vom 13. März 2015.

Fotos: AquaPlus AG 2015

Gewässer	Gemeinde	Ortsbezeichnung	Stellenbezeichnung
Rheintaler Binnenkanal	Sennwald	Mädli	OGB 195
Rheintaler Binnenkanal	Rüthi	Strackacker	OGB 196
Rheintaler Binnenkanal	Oberriet	Güetli	OGB 197
Rheintaler Binnenkanal	Oberriet	Dreier	OGB 198
Rheintaler Binnenkanal	Au	Monstein	OGB 199
Rietaach	Altstätten	Banriet	OGB 200
Rietaach	Altstätten	Banriet/unterhalb ARA	OGB 237
Rietaach	Marbach	Anger	OGB 201

Rheintaler Binnenkanal: OGB 195, Mädli, Aufnahme vom 11. März 2015

Rheintaler Binnenkanal: OGB 196, Strackacker, Aufnahme vom 11. März 2015

Rheintaler Binnenkanal: OGB 197, Güetli, Aufnahme vom 11. März 2015

Rheintaler Binnenkanal: OGB 198, Dreier, Aufnahme vom 11. März 2015

Rheintaler Binnenkanal: OGB 198, Monstein, Aufnahme vom 11. März 2015

Abb. 3.2: Fotodokumentation der Untersuchungsstellen im Rheintaler Binnenkanal. Untersuchungen vom 11. März 2015.

Fotos: AquaPlus AG 2015

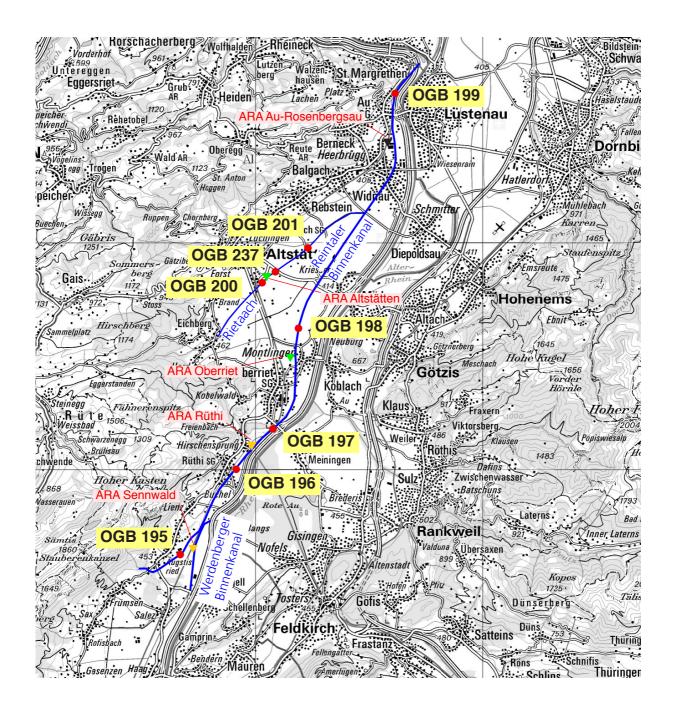


Abb. 3.3: Untersuchungsgebiet mit den 8 Untersuchungsstellen im Rheintaler Binnenkanal (RBK) und in der Rietaach sowie der Lage der im Gebiet sich befindenden Kläranlagen (▼ <10'000 / ▼ >10'000-49'999 / ▼ >50'000 EW). Untersuchungen vom 11. und 13.3.2015

Gewässer	Gemeinde	Ortsbezeichnung	Stellenbezeichnung
Rheintaler Binnenkanal	Sennwald	Mädli	OGB 195
Rheintaler Binnenkanal	Rüthi	Strackacker	OGB 196
Rheintaler Binnenkanal	Oberriet	Güetli	OGB 197
Rheintaler Binnenkanal	Oberriet	Dreier	OGB 198
Rheintaler Binnenkanal	Au	Monstein	OGB 199
Rietaach	Altstätten	Banriet	OGB 200
Rietaach	Altstätten	Banriet/unterhalb ARA	OGB 237
Rietaach	Marbach	Anger	OGB 201

Tab. 3.1: Untersuchungsstellen im Rheintaler Binnenkanal (RBK) und der Rietaach der Untersuchungen vom 11. und 13. März 2015 mit Angabe der geografischen Lokalitäten (Gemeinde, Koordinaten, Meereshöhe) sowie Feldmesswerte (Leitfähigkeit, Wassertemperatur).

Gewässer - Gemeinde Untersuchungsstelle Koordinaten / Datum	Meeres- höhe [m ü. M.]	Leit- fähigkeit [µS/cm]	Tempe- ratur. [°C]	Kurzcharakterisierung
RBK - Sennwald OGB 195 - Mädli 756 750 / 236 250 11.3.2015 / 14.00 Uhr	430	299 (Schnee?)	8.3	Unterhalb der Brücke bei Güllenmad / Mädli (Punkt 432), begradigtes Gewässer, Ufer mit Natursteinen verbaut, kein Ufergehölz (Fettwiese) Näheres Einzugsgebiet: Landwirtschaft und Siedlungen.
RBK - Rüthi OGB 196 - Strackacker 759 150 / 240 250 11.3.2015 / 12.50 Uhr	425	416	7.7	Unterhalb der Brücke bei Strackacker, renaturiertes Gewässer, Ufer mehrheitlich unverbaut, z. T. ohne Ufergehölz Näheres Einzugsgebiet: Landwirtschaft und Siedlungen.
RBK - Oberriet OGB 197 - Güetli 760 750 / 241 600 11.3.2015 / 11.45 Uhr	420	419	7.5	Oberhalb Brücke bei Güetli, unterhalb ARA Rüthi und Stauraum KW Blatten, begradigtes Gewässer, Uferböschung durch Röhricht gebildet, langsam fliessend infolge Einstau, maximal ca. 3 m tief Näheres Einzugsgebiet: Landwirtschaft und Siedlungen.
RBK - Oberriet OGB 198 - Dreier 761 920 / 246 250 11.3.2015 / 10.00 Uhr	414	427	7.4	Oberhalb Brücke bei Dreier (Punkt 414) und unterhalb ARA Oberriet sowie unterhalb KW Montlingen, begradigtes Ge- wässer, Ufer mit Natursteinen verbaut und ohne Ufergehölz Näheres Einzugsgebiet: Landwirtschaft und Siedlungen.
RBK - Au OGB 199 - Monstein 766 250 / 256 550 11.3.2015 / 08.20 Uhr	400	462	6.8	Unterhalb der Brücke bei Monstein (Punkt 404), unterhalb ARA Au-Rosenbergsau, unterhalb Zufluss Littenbach begradigtes Gewässer, Ufer mit Natursteinen verbaut und ohne Ufergehölz Näheres Einzugsgebiet: Siedlung, Gewerbe, Industrie.
Rietaach - Altstätten OGB 200 - Banriet 760 300 / 248 220 13.3.2015 / 08.30 Uhr	418	424	1.9	Südlich von Altstätten SG im Gebiet Hinterdamm / Banriet, oberhalb der Brücke beim Punkt 419 m ü.M. oberhalb ARA Altstätten, begradigtes Gewässer, Ufer mit Natursteinen verbaut und ohne Ufergehölz Näheres Einzugsgebiet: Landwirtschaft und Siedlungen.
Rietaach - Altstätten OGB 237 - Banriet/ARA 760 727 / 248 594 13.3.2015 / 10.10 Uhr	405	564	5.5	Südlich von Altstätten SG im Gebiet Luseren / Banriet, oberhalb der Brücke beim Punkt 417 m ü.M. und rund 150 m unterhalb der ARA Altstätten, begradigtes Gewässer, Ufer mit Natursteinen verbaut und ohne Ufergehölz Näheres Einzugsgebiet: Landwirtschaft und Siedlungen.
Rietaach - Marbach OGB 201 - Anger 762 250 / 249 670 13.3.2015 / 11.15 Uhr	411	495	4.8	Östlich von Altstätten SG im Gebiet Anger, oberhalb der Brücke beim Punkt 413 m ü.M. und rund 1.7 km unterhalb der ARA Altstätten, begradigtes Gewässer, Ufer mit Natur- steinen verbaut und ohne Ufergehölz Näheres Einzugsgebiet: Landwirtschaft und Siedlungen.

4 Ergebnisse und Diskussion

Die Detailresultate der Untersuchungen befinden sich in ANHANG A (Stellendokumentationen). Im Folgenden werden die wichtigsten Resultate besprochen.

4.1 Äusserer Aspekt

Eine überblicksmässige Zusammenstellung über die Beeinträchtigungen des Äusseren Aspektes an den Untersuchungsstellen im Rheintaler Binnenkanal (RBK) und der Rietaach liefert Tabelle 4.1.

Rheint. Binnenkanal

Im **Rheintaler Binnenkanal** traten anlässlich der Untersuchung vom 11. März 2015 bezüglich des Äusseren Aspektes an allen untersuchten Stellen diverse Beeinträchtigungen der fliessenden Welle wie auch der Gewässersohle auf. Die Beeinträchtigung nimmt dabei entlang der Fliessstrecke sowohl in der Ausprägung wie auch in der Vielfältigkeit der Beeinträchtigung deutlich zu.

Ab der Stelle OGB 198 - RBK - Oberriet - Dreier konnte eine leichte **Trübung** des Wassers festgestellt werden. Die Trübung wurde durch den Zufluss der Rietaach weiter verstärkt. Die Ursachen für die Trübung der Rietach wird bei der Diskussion der Rietaach näher erläutert (siehe unten). Ein erhöhter Eintrag von Schwebstoffen in den RBK ist insbesondere aus fischereilicher Sicht nicht erwünscht. Der RBK dient als Laichgewässer der sehr sensiblen Äsche (*Thymallus thymallus*). Eine erhöhte Trübung steht im Verdacht, den Reproduktionserfolg der Äsche zu mindern.

Eine **Verschlammung** der Gewässersohle kommt mit Ausnahme der obersten Stelle (OGB 195) an allen Untersuchungsstellen vor. Am ausgeprägtesten ist die Verschlammung im Bereich der Stellen OGB 196 - RBK - Rüthi - Strackacker und OGB 197 - RBK - Oberriet - Güetli, wo eine mittelstarke Verschlammung festgestellt wurde. Ursache hierfür ist neben dem Vorhanden sein von Feinsediment und Schwebstoffen das geringe Gefälle (OGB 196) und die Stauhaltung des Kraftwerks Blatten (OGB 197). Im weiteren Fliessverlauf liegt nur noch eine leichte Verschlammung vor.

Die **Schaumbildung** war an allen Stellen nur gering. Die festgestellte Schaumbildung kann verschiedene Ursachen haben. So weisen Wald- und Riedgebiete wie auch Wasserpflanzenbestände natürlicherweise organische Substanzen auf (Pflanzenabbauprodukte), welche die Oberflächenspannung des Wassers herabsetzen und dadurch die Schaumbildung ermöglichen. Im Weiteren tragen auch Strassenabwasser (Scheibenwaschmittel) sowie Abwasser aus der Siedlungsentwässerung generell (Entlastungen, Einleitungen etc.) zur Schaumbildung bei.

Eisensulfid wurde nur in geringem Masse festgestellt (< 10 %). Die Bildung von Eisensulfid hängt grundsätzlich von der Dynamik (Geschiebetrieb), der Menge an eingebrachten Trübstoffen (Kolmation der Gewässersohle) und auch von der Menge an eingetragenem organischem Material ab. Eisensulfid bildet sich in über längere Zeit stabiler (allenfalls kolmatierter) oder stark verschlammter Gewässersohle. Gewässer mit regelmässig Geschiebetrieb und eher feinem Korn weisen selten Eisensulfid auf. Oft bilden sich schwarze Flecken von Eisensulfid auf den Unterseiten von grösseren im Wasser sich befindenen Ufer nahen Steinen. Eisen-

Tab. 4.1: Zusammenstellung über den Zustand des äusseren Aspektes, der Kolmation der Gewässersohle und des heterotrophen Bewuchses im Rheintaler Binnenkanal (RBK) und in der Rietaach anlässlich der Untersuchung vom 11. und 13. März 2015.

Beurteilung des Gewässerzustandes gemäss Anforderungen an die Wasserqualität und ökologische Ziele für Fliessgewässer gemäss Gewässerschutzverordnung (GSchV Anhang 1 und 2) in Anlehnung an das BAFU Modul Äusserer Aspekt (Stufe F):

Anforderungen an die Wasserqualität und ökologische Ziele **erfüllt** (= Klasse 1 'kein').

Anforderungen an die Wasserqualität und ökologische Ziele knapp nicht eingehalten bzw. nicht erreicht oder Situation nicht klar (= Klasse 2 'wenig/mittel'), **Erfüllung der Anforderungen GSchV fraglich.**

Anforderungen an die Wasserqualität und ökologische Ziele **nicht erfüllt** (= Klasse 3 'viel').

	Stelle	Beurteilung	Beeinträchtigungen	Mögliche Ursachen
(RBK)	OGB 195 Sennwald - Mädli	fraglich	Eisensulfidflecken (< 10 % Fundhäufigkeit) leichte Kolmation	Landwirtschaft, Siedlungs- und Strassen- entwässerung, kanalartig verbautes Gerinne
	OGB 196 Rüthi - Strackacker	fraglich	wenig stabiler Schaum mittel starke Verschlammung vereinzelt heterotropher Bewuchs Eisensulfidflecken (< 10 % Fundhäufigkeit) leichte Kolmation	Landwirtschaft, Siedlungs- und Strassen- entwässerung (belastete Sedimente)
Rheintaler Binnenkanal (RBK)	OGB 197 Oberriet - Güetli	fraglich	mittel starke Verschlammung Eisensulfidflecken (< 10% Fundhäufigkeit) wenig Abfälle starke Kolmation	Landwirtschaft, Siedlungs- und Strassen- entwässerung (belastete Sedimente), ka- nalartig verbautes Gerinne, Staubereich KW Blatten, ARA Rüthi
Rheinta	OGB 198 Oberriet - Dreier	fraglich	geringe Trübung, leichte Verfärbung wenig stabiler Schaum Eisensulfidflecken (< 10 % Fundhäufigkeit) wenig Abfälle leichte Kolmation	Baustelle Landwirtschaft, Siedlungs- und Strassen- entwässerung, kanalartig verbautes Gerinne, ARA Oberriet
	OGB 199 Au - Monstein	fraglich	mittlere Trübung, mittlere Verfärbung wenig stabiler Schaum, leichte Verschlam- mung, vereinzelt heterotropher Bewuchs Eisensulfidflecken (< 10 % Fundhäufigkeit) wenig Abfälle, mittlere Kolmation	Baustelle Landwirtschaft, Siedlungs- und Strassen- entwässerung, kanalartig verbautes Gerinne, Einmündung Ländernaach, Kläranlage Au-Rosenbergsau
	OGB 200 Altstätten - Banriet	fraglich	geringe Trübung, geringe Verfärbung geringer Geruch, wenig stabiler Schaum leichte Verschlammung, vereinzelt hetero- tropher Bewuchs, Eisensulfidflecken (< 10 % Fundhäufigkeit), leichte Kolmation	Landwirtschaft, Siedlungs- und Strassen- entwässerung, kanalartig verbautes Gerinne HINWEIS: Plastikteilchen aus Zufluss - Info an AFU Kt. St. Gallen
Rietaach	OGB 237 Altstätten - Banriet/ARA	fraglich	mittlere Trübung, mittlere Verfärbung wenig stabiler Schaum, mittlere Verschlam- mung, wenig heterotropher Bewuchs Eisensulfidflecken (< 10 % Fundhäufigkeit) starke Kolmation	Baustelle, Hangrutsch Landwirtschaft, Siedlungs- und Strassen- entwässerung, kanalartig verbautes Gerinne, Kläranlage Altstätten
	OGB 201 Marbach - Anger	nicht erfüllt	starke Trübung, mittlere Verfärbung wenig stabiler Schaum, mittlere Verschlam- mung, vereinzelt heterotropher Bewuchs Eisensulfidflecken (< 10 % Fundhäufigkeit) starke Kolmation	Baustelle, Hangrutsch Landwirtschaft, Siedlungs- und Strassen- entwässerung, kanalartig verbautes Gerinne, Kläranlage Altstätten

sulfid bildet sich aber auch im feinen, organisch angereicherten schlickartigen Sediment.

Fazit:

Die Erfüllung der Anforderungen an die Wasserqualität gemäss GSchV Anhang 2 war an allen untersuchten Stellen im Rheintaler Binnenkanal fraglich.

Die Zahl der vorgefundenen Beeinträchtigungen nimmt dabei entlang der Fliessstrecke zu. Die Ursachen dürften unterschiedlicher Art sein. So sind Baustellen mit ungenügender Wasserhaltung (Trübung, etc.), die Siedlungsentwässerung (Stassenabwasser, Hochwasserentlastungen, diverse ARA's etc.) sowie eine grössere Rutschung im Einzugsgebiet des Brendenbaches verantwortlich für die beobachteten Beeinträchtigungen. Zusätzlich dürften weitere Gründe wie Pflanzenabbauprodukte (Schaumbildung), Hochwasserereignisse (Abschwemmungen), das geringe Gefälle (Sedimentation, wenig Dynamik), die geringe Beschattung (hohe pflanzliche Biomasse) und die schlechte Ökomorphologie zur insgesamt schlechten Lebensraumqualität beitragen.

In der **Rietaach** traten anlässlich der Untersuchung vom 13. März 2015 bezüglich des Äusseren Aspektes an allen drei Stellen diverse Beeinträchtigungen der fliessenden Welle wie auch der Gewässersohle auf. Die stärkste und vielfältigste Beeinträchtigung wurde an der untersten Stelle OGB 201 - Rietaach - Marbach - Anger festgestellt.

So trat an dieser Stelle eine sehr **starke Trübung** des Wassers auf. Diese Trübung wurde verursacht durch den linksseitigen Zufluss des Stadtbaches, welcher oberhalb der ARA Altstätten in die Rietaach mündet. Dabei handelt es sich sowohl um eine natürliche (Rutschung im Einzugsgebiet des Brendenbaches) sowie um anthropogene (Bauarbeiten an den beiden Kiessammlern) Trübung. Das Einbringen von Trübstoffen infolge Baustellen ist aus gewässerökologischer Sicht nicht erwünscht. Trübstoffe können die Lichtverhältnisse beeinträchtigen, eine **Verschlammung** und Kolmation der Gewässersohle bewirken sowie toxisch wirkende Stoffe enthalten. Insbesondere für Fische (Kiemenatmung) wie auch für andere aquatische Organismen sind erhöhte Trübstoffkonzentrationen über längere Zeit (insbesondere während Trockenwetterabfluss) sehr problematisch bis allenfalls tödlich. Dies trifft insbesondere auch in der Rietaach zu, in welcher der Lebensraum sehr monoton ist, also keine Ausweich- und Rückzugsmöglichkeiten gegeben sind und das Wiederbesiedlungspotenzial aus nahe gelegenen Zuflüssen als gering eingeschätzt wird.

Im weiteren traten überall kleine Mengen an stabilem **Schaum**, eine Verschlammung und Kolmation der Gewässersohle sowie Eisensulfid auf den Steinunterseiten oder im Feinsediment auf. An allen drei Stellen wurde vereinzelt bis wenig heterotropher Bewuchs beobachtet.

Die **Schaumbildung** war nur gering. Die festgestellte Schaumbildung kann verschiedene Ursachen haben. So weisen Wald- und Riedgebiete wie auch Wasserpflanzenbestände natürlicherweise organische Substanzen auf (Pflanzenabbauprodukte), welche die Oberflächenspannung des Wassers herabsetzen und dadurch die Schaumbildung ermöglichen. Im Weiteren tragen auch Strassenabwas-

Rietaach

ser (Scheibenwaschmittel) sowie Abwasser aus der Siedlungsentwässerung generell (Entlastungen, Einleitungen etc.) zur Schaumbildung bei.

Die Bildung von **Eisensulfid** hängt grundsätzlich von der Dynamik (Geschiebetrieb), der Menge an eingebrachten Trübstoffen (Kolmation der Gewässersohle) und auch von der Menge an eingetragenem organischem Material ab. Eisensulfid bildet sich in über längere Zeit stabiler (allenfalls kolmatierter) oder verschlammter Gewässersohle. Gewässer mit regelmässig Geschiebetrieb und eher feinem Korn weisen selten Eisensulfid auf. Oft bilden sich schwarze Flecken von Eisensulfid auf den Unterseiten von grösseren im Wasser sich befindenen Ufer nahen Steinen. Eisensulfid bildet sich aber auch im feinen, organisch angereicherten schlickartigen Sediment. In der Rietaach fanden wir Eisensulfid auf den Steinunterseiten, im Feinsediment wie auch auf Holz vor.

Anlässlich der Untersuchungen am 13. März 2015 wurden im Bereich der Stelle OGB 200 - Rietaach - Altstätten - Banriet verbreitet kleine weisse **Kunststoffpartikel** im Gerinne beoachtet. Diese stammten aus dem linkseitigen Zufluss (Mühlibach). Nachforschungen haben ergeben, dass diese Kunststoffpartikel höchstwahrscheinlich durch unsachgemässe Lagerung durch eine Verpackungsfirma auf der anderen Seite des Bahndamms auf die Böschung am Mühlibach bzw. auch zum Teil direkt in den Bach hinein gelangten und bei Regen in den Bach geschwemmt wurden.

Fazit:

Die Erfüllung der Anforderungen an die Wasserqualität gemäss GSchV Anhang 2 war an der Stelle OGB 200 - Rietaach - Altstätten - Banriet und an der Stelle OGB 237 - Rietaach - Altstätten - Banriet/unterhalb ARA fraglich. An der Stelle OGB 201 - Rietaach - Marbach - Anger wurden die Anforderungen an die Wasserqualität nicht erfüllt.

Die Zahl der vorgefundenen Beeinträchtigungen (Trübung, Verfärbung, Schaumbildung, Geruch, Verschlammung, Kolmation, Eisensulfid) war gross. Die Ursachen dürften unterschiedlicher Art sein. So sind Baustellen mit ungenügender Wasserhaltung (Trübung, etc.), die Siedlungsentwässerung (Stassenabwasser, Hochwasserentlastungen, ARA Altstätten etc.) sowie eine grössere Rutschung im oberen Einzugsgebiet verantwortlich für die beobachteten Beeinträchtigungen. Zusätzlich dürften weitere Gründe wie Pflanzenabbauprodukte (Schaumbildung), Hochwasserereignisse (Abschwemmungen), das geringe Gefälle (Sedimentation, wenig Dynamik), die geringe Beschattung (hohe pflanzliche Biomasse) und die schlechte Ökomorphologie zur insgesamt schlechten Lebensraumqualität beitragen.

4.2 Pflanzlicher Bewuchs

Der pflanzliche Bewuchs (Algen, Moose und Makrophyten) kann aufgrund des Artenspektrums, der Bewuchsdichte und der Wuchsform charakterisiert werden. Dichter pflanzlicher Bewuchs kommt erfahrungsgemäss an Stellen mit stabilem Untergrund, guten Licht- und Nährstoffverhältnissen auf, wobei die Einleitung

von Abwasser das Wachstum fördert (Nährstoffe, wachstumsfördernde Stoffe in geringen Mengen, Vitamine, Erwärmung der Wassertemperatur etc.) und eine ständige Trübung des Wassers das Pflanzenwachstum generell hemmt.

Hohe Pflanzendichten vermögen den Sauerstoffgehalt des Wassers insbesondere kleiner Fliessgewässer während Zeiten mit geringer Abflussmenge oder im Ufer nahen Bereich mit geringer Strömung zu beeinflussen. Eine hohe pflanzliche Biomasse kann eine Sauerstoffproduktion infolge Photosynthese (tagsüber, Sauerstoffübersättigung) und ein Sauerstoffverbrauch infolge Atmung (nachts, Sauerstoffzehrung) verursachen. Hohe Änderungen im Sauerstoffgehalt, insbesondere Phasen mit geringer Sauerstoffkonzentration, bedeuten für empfindliche Organismen (z. B. Steinfliegenlarven) Stress. Sie werden von bezüglich Belastungen toleranten Arten verdrängt.

Der Untersuchungszeitraum (März 2015) liegt ausserhalb der Vegetationsperiode vieler Pflanzen. Die Resultate müssen mit der entsprechenden Vorsicht interpretiert werden.

Rheint. Binnenkanal

Im Rheintaler Binnenkanal wurde insgesamt eine grosse Vielfalt an Algen (> 7 Taxa), Moosen (4 Taxa) und Makrophyten (11 Taxa) nachgewiesen. Anlässich der Untersuchungen vom 11. März 2015 konnten folgende Arten festgestellt und bestimmt werden:

Makrophyten:

- Berula erecta (Aufrechte Berle)
- Chara globularis (Zerbrechliche Armleuchteralge)
- Elodea canadensis (Kanadische Wasserpest)
- Elodea nuttallii (Nuttals Wasserpest)
- Gramineae (Süssgräser)
- Groenlandia densa (Dichtes Laichkraut)
- Phragmites australis (Schilf)
- Potamogeton pectinatus (Kamm-Laichkraut)
- Potamogeton crispus (Krauses Laichkraut)
- Veronica beccabunga (Bach-Ehrenpreis)
- Zannichellia palustris (Sumpf-Teichfaden, **VU**, verletzlich)

Moose:

- Cinclidotus aquaticus (EN, stark gefährdet)
- Fontinalis antipyretica
- Hygroamblystegium tenax
- Rynchostegium riparioides

Algen:

- Krustenalgen: Hildenbrandia rivularis (Rotalge)
 - Blaualgen
 - Kieselalgen
- Fadenalgen: Cladophera glomerata (Grünalge)
 - Gongrosira sp. (Grünalge)
 - Vaucheria sp. (Gelbgrünalge)

Der Makrophytenbewuchs ist entsprechend der Jahreszeit sehr gering. Während an der obersten Untersuchungsstelle (OGB 195 - RBK - Sennwald - Mädli) keine Makropyhten festgestellt wurden, sind an allen übrigen Stellen 1–10 % der Gewässersohle mit Makrophyten bedeckt. Die Artenzahl variiert zwischen zwei und sechs Arten. Die grösste Vielfalt mit 6 Arten wurde im revitalisierten Abschnitt (OGB 196 - RBK - Rüthi - Strackacker) festgestellt, die kleinste an der Stelle OGB 199 - RBK - Au - Monstein. Die vorkommenden Arten sind mit Ausnahme von *Chara globularis* (OGB 196 - RBK - Rüthi - Strackacker, oligo-mesotraphente Art) dem eutraphenten (nährstoffliebenden) Spektrum zuzuordnen. Der SumpfTeichfaden (*Zannichellia palustris*) gilt häufig als Zeiger lokaler Beeinträchtigungen (Nährstoffeinträge, resp. -Ablagerungen). Die Art ist die einzige mit einem Rote Liste Status (VU) und wurde an den Stellen OGB 196 - RBK - Rüthi - Strackacker, OGB 197 - RBK - Oberriet - Güetli und OGB 198 - RBK - Oberriet - Dreier nachgewiesen.

Während bei den **Moosen** im Oberlauf die Arten *Cinclidotus aquaticus* und *Rhynchostegium riparioides* dominieren, so konnte von der Stelle OGB 19-7 - RBK - Oberriet - Güetli an flussabwärts nur noch *Fontinalis antipyretica* nachgewiesen werden. Nach LANDOLT et al. (2010) weist *Rhynchostegium riparioides* eine Nährstoffzahl von 1 (nährstoffarm) auf, während *Fontinalis antipyretica* mit Nährstoffzahl 3 (mittlerer Nährstoffgehalt) einen Nährstoffeintrag ins Gewässer anzeigen kann. Dies stimmt mit den unterschiedlichen Einleitungen in den Binnenkanal überein. An der Stelle OGB 195 - RBK - Sennwald - Mädli - RB-K - Sennwald - Mädli ist die Dichte am höchsten (Klasse 3) und es kommen vier Arten vor. Die an der Stelle OGB 195 - RBK - Sennwald - Mädli dominierende Art *Cinclidotus aquaticus* weist in der Schweiz einen Rote Liste Status EN (stark gefährdet) auf, alle übrigen Arten sind als LC eingestuft. *Cinclidotus aquaticus* ist eine typische Art raschfliessender Abschnitte in klaren, kühlen Gewässern.

Makroskopisch auffällig waren bezüglich des **Algen**bewuchses neben den Kieselalgen vor allem die Fadenalge *Vaucheria* sp. (Gelbgrünalge). Sie gilt bei hoher Dichte als Störzeiger. *Vaucheria* sp. trat aber an keiner Stelle im Sinne einer starken 'Veralgung' auf. Die Bewuchsdichten sind auch entlang dem Fliessverlauf konstant. Die gesamte Algenbewuchsdichte nahm maximal die Stufe 3 (*gut ausgebildete Fäden und Zotten*) ein. Die Gewässersohle war nicht flächendeckend bewachsen. Es waren vor allem die kopfrossen Steine sowie die grossen Steinblöcke sowie Bereiche der Wasserpflanzen mit Fadenalgen bedeckt.

Fazit:

Die Anforderungen an die Wasserqualität gemäss GSchV Anhang 2 hinsichtlich pflanzlichem Bewuchs (Veralgung, Verkratung) waren im Rheintaler Binnenkanal an allen Stellen erfüllt. Störzeiger wie die Fadenalge Vaucheria sp. oder der Sumpf-Teichfaden Zannichellia palustris sind zwar verbreitet vorhanden, aber nicht in dominanten Bewuchsdichten. Der pflanzliche Bewuchs (Arten, Dichte, Wuchsform) ist aber typisch für nährstoffreiche, wenig beschattete, kanalartig verbaute und wenig dynamische Gewässer.

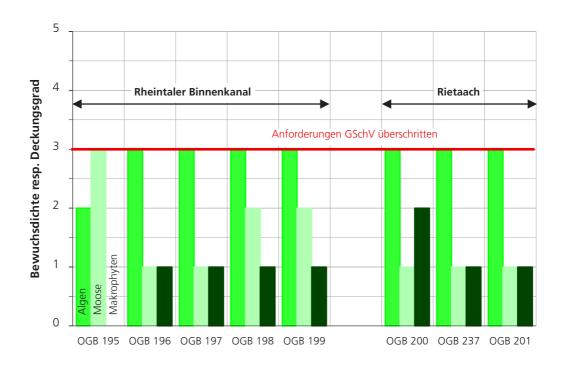


Abb. 4.1: Algen-, Moos- und Wasserpflanzenbewuchsdichte in Rheintaler Binnenkanal (links) und Rietaach (rechts) anlässlich der Untersuchungen vom 11. und 13. März 2015.

Algenbewuchsdichte. Skala nach THOMAS & SCHANZ (1976, Skala abgeändert von 0 bis 5): 0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Krusten, 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen, 5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar.

Deckungsgrad Moose und Wasserpflanzen. Skala nach THOMAS & SCHANZ (1976, Skala abgeändert von 0 bis 5): 0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%.

Rote Linie: Anforderungen an die Wasserqualität im Sinne von Algenwucherungen gemäss GSchV Anhang 2 nicht mehr erfüllt (Bewertung nach eigener Einschätzung).

Gewässer	Gemeinde	Ortsbezeichnung	Stellenbezeichnung
Rheintaler Binnenkanal	Sennwald	Mädli	OGB 195
Rheintaler Binnenkanal	Rüthi	Strackacker	OGB 196
Rheintaler Binnenkanal	Oberriet	Güetli	OGB 197
Rheintaler Binnenkanal	Oberriet	Dreier	OGB 198
Rheintaler Binnenkanal	Au	Monstein	OGB 199
Rietaach	Altstätten	Banriet	OGB 200
Rietaach	Altstätten	Banriet/unterhalb ARA	OGB 237
Rietaach	Marbach	Anger	OGB 201

Rietaach

In der Rietaach wurden nur wenige Arten an Algen (> 4 Taxa), Moosen (1 Taxon) und Makrophyten (1 Taxon) nachgewiesen. Anlässlich der Untersuchungen vom 13. März 2015 konnten folgende Arten festgestellt und bestimmt werden:

Makrophyten: - Myriophyllum spicatum (Ähriges Tausendblatt)

Moose: - Fontinalis antipyretica

Algen: - Krustenalgen: - Blaualgen

- Kieselalgen

- Fadenalgen: - Cladophera sp. (Grünalge)

- Vaucheria sp. (Gelbgrünalge)

Bei den **Makropyhten** verändern sich die Vegetationsverhältnisse im Fliessverlauf. Die Bewuchsdichte ist an der obersten Stelle am höchsten (11–25 % der Gewässersohle) und nimmt im Fliessverlauf ab. An allen drei Stellen konnte nur das Ährige Tausendblatt (*Myriophyllum spicatum*) nachgewiesen werden. Im Gegensatz zu vielen anderen Makrophyten sterben die oberirdischen Pflanzenteile dieser Arten im Herbst/Winter nur teilweise ab und sind so das ganze Jahr über nachweisbar. *Myriophyllum spicatum* ist dem eutraphenten (nährstoffliebenden) Spektrum zuzuordnen und ist somit ein Zeiger für relevante Nährstoffeinträge ins Gewässer.

Bei den **Moosen** konnte nur eine Art nachgewiesen werden. Die Bewuchsdichte war über alle untersuchten Stellen konstant (Bewuchsdichte 1–10 %). *Fontinalis antipyretica* weist nach LANDOLT et al. (2010) eine Nährstoffzahl 3 (mittlerer Nährstoffgehalt) auf. Hohe Dichten an *Fontinalis antipyretica* können dabei auf einen Nährstoffeintrag ins Gewässer anzeigen.

Makroskopisch auffällig waren bezüglich des **Algen**bewuchses neben den Kieselalgen vor allem die Fadenalge *Vaucheria* sp. (Gelbgrünalge). Sie gilt bei hoher Dichte als Störzeiger. *Vaucheria* sp. trat aber an keiner Stelle im Sinne einer starken 'Veralgung' auf. Die Bewuchsdichten sind auch entlang dem Fliessverlauf konstant. Die gesamte Algenbewuchsdichte nahm maximal die Stufe 3 (*gut ausgebildete Fäden und Zotten*) ein. Die Gewässersohle war nicht flächendeckend bewachsen. Es waren vor allem die kopfgrossen Steine sowie die grossen Steinblöcke sowie Bereiche der Wasserpflanzen mit Fadenalgen bedeckt.

Fazit:

Die Anforderungen an die Wasserqualität gemäss GSchV (Anhang 2) hinsichtlich pflanzlicher Bewuchs (Veralgung, Verkratung) waren in der Rietaach an allen Stellen erfüllt. Störzeiger wie die Fadenalge *Vaucheria sp.* sind zwar verbreitet vorhanden, aber nicht in dominaten Bewuchsdichten. Der pflanzliche Bewuchs (Arten, Dichte, Wuchsform) ist aber typisch für nährstoffeiche, wenig beschattete, kanalartig verbaute und wenig dynamische Gewässer.

4.3 Wasserwirbellose

Die Wasserwirbellosen wurden an allen 5 Stellen im Rheintaler Binnenkanal und allen drei Stellen in der Rietaach untersucht. Die detaillierten Ergebnisse der Untersuchung der Wasserwirbellosen sind in Tabelle 4.2 und im Anhang A (Stellendokumentationen) zusammengestellt.

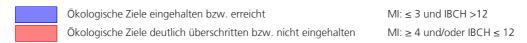
An allen Stellen wurde das **Probenahmeverfahren** nach der IBCH-Methode durchgeführt. Die 8 Teilproben wurden jedoch aufgeteilt in drei Surberproben und in fünf Kickproben. Die häufigen und dominierenden Teillebensräume (Choriotope) der fliessenden Welle wurden mittels Surber-Sampling beprobt und zu einer Probe gepoolt (= Rohprobe 1). Die weiteren Choriotope wurden mittels Kicksampling beprobt und zu einer zweiten Probe gepoolt (= Rohprobe 3). Diese Unterteilung in Surber- und Kickproben hat den Vorteil, dass die Surberproben ausgezählt werden können zur Ermittlung der Individuendichte, des Saprobiewertes, des Nassgewichtes sowie der funktionalen Gruppen. Der IBCH-Wert beruht jedoch auf allen 8 Kickproben, wobei dafür die Abundanzklassen eruiert wurden.

Rheint. Binnenkanal

Die **Gesamtindividuendichte** erreichte im Rheintaler Binnenkanal mittlere—hohe Dichtewerte von 413 bis 2'320 Ind./0.1 m² (Tab. 4.2). Die **Taxazahlen** nahmen mit 32 bis 51 Taxa hohe und die **Diversität** H mit Werten von 2.5 bis 3.9 mittlere Werte an. Die **Anzahl EPT** (Anzahl Arten an Eintagsfliegen-, Steinfliegen- und Köcherfliegenlarven) betrug pro Stelle zwischen 10 und 23 Taxa. Steinfliegen wurden nur in sehr geringen Dichten nachgewiesen. Die Anzahl der Eintagsfliegen nahm entlang der Fliessstrecke von 7 auf 2 Taxa ab, die Anzahl der Steinfliegen von 3 auf 1 Taxon. Die Anzahl der EPT-Arten ist an der obersten Stelle (OGB 195) mit 23 Taxa am höchsten und an der untersten Stelle mit 10 Taxa am tiefsten.

Die dominierenden Organismengruppen mit einem Anteil von mehr als 20 % an der Individuendichte in den Surberproben waren die Zuckmückenlarven, Käferlarven und Bachflohkrebse. Sie machten an allen fünf untersuchten Stellen zwischen 68 und 82 % aller Individuen aus (Abb. 4.2). Weitere häufige Gruppen (> 5 %) waren die Wassermilben (*Hydracarina* sp.), Eintagsfliegen (vor allem *Beatidae* und *Ephemerellidae*), Köcherfliegen (vor allem *Hydropsychidae*, *Glossosomatidae* und *Limnephilidae*), Zweiflügler (vor allem *Simuliidae*) und Würmer (*Oligochaeta*). Steinfliegen (*Leuctridae* und *Nemuridae*) und alle übrigen Taxa kamen nie in höheren Dichten vor. Die Dominanz der erwähnten Organismengruppen und das gleichzeitige nur spärliche Vorkommen von Steinfliegenlarven deuten darauf hin, dass an den untersuchten Stellen eine eher mässige Wasser- und Lebensraumqualität vorhanden sein muss.

Die vorhandenen Arten sind typisch für sandige bis verschlammte Lebensräume (Pelal, Psammal), Stein- und Kieschoriotope (Akal, Lithal) sowie für pflanzliche (Phytal, Algen) Lebensräume. Es handelt sich zudem vor allem um Sedimentfresser, Zerkleinerer und Weidegänger (50 bis 80 %, vgl. Abb. 4.3). Räuber und Filtrierer sind ebenfalls vorhanden und nehmen zusammen je nach Stelle 10 bis 26 % ein. Die vorgefundenen Arten sind zu einem grossen Anteil (21 bis 71 %) bezüglich Strömungspräferenz indifferent und repräsentieren nur in geringem Masse strömende Verhältnisse (rheophil). Arten, welche stehendes oder schwach strömendes Milieu bevorzugen, kamen kaum vor.


Einzig an der obersten Stelle (OGB 195 - RBK - Sennwald - Mädli) konnte eine Arte mit einem Gefährdungsstatus gemäs **Rote Liste** nachgewiesen werden. Es handelt sich dabei um die Steinfliege *Protonemura cf. meyeri* (VU) Die Art ist in jüngerer Zeit nicht im Gebiet nachgewiesen worden. Die Bestimmung ist daher mit einer geringen Unsicherheit behaftet und die Arten entsprechend mit cf. bezeichnet.

Tab. 4.2: Zusammenstellung über die Gemeinschaften der Wasserwirbellosen im Rheintaler Binnenkanal und in der Rietaach vom 11. und 13. März 2015.

Gewässerzustand gemäss BAFU (2010: IBCH) sowie weitere Indices und Kennwerte. Die Farben zeigen die Zustandsklassen und die Zahlen den Indexwert:

Makroindex	1 - 2	Zustandsklasse: sehr gut	4	Zustandsklasse: mässig	7 - 8	Zustandsklasse: schlecht
(MI)	3	Zustandsklasse: gut	5 - 6	Zustandsklasse: unbefriedigen	d	
IBCH	17 - 20	Zustandsklasse: sehr gut	9 - 12	Zustandsklasse: mässig	0 - 4	Zustandsklasse: schlecht
	13 - 16	Zustandsklasse: gut	5 - 8	Zustandsklasse: unbefriedigen	d	
SPEAR (pesticide)	> 44	Zustandsklasse: sehr gut	23 - 33	Zustandsklasse: mässig	0 - 11	Zustandsklasse: schlecht
(pesticide)	34 - 44	Zustandsklasse: gut	12 - 22	Zustandsklasse: unbefriedigen	d	

Beurteilung des Gewässerzustandes gemäss ökologische Ziele für Fliessgewässer gemäss Gewässerschutzverordnung (GSchV Anhang 1):

	Stelle	Gesamt- individuen- dichte	Taxa- zahl/EPT	Diver- sität H	Spear _{pesticide} - Index	MI	IBCH	Gewässer- zustand (nach MI/IBCH)	Bemerkung
	OGB 195 Sennwald - Mädli	1'349 Ind./0.1 m ²	46 / 23	3.36	Familie: 41.8 % Art: 34.9 %	2	13	erfüllt	Dominanz der Eintagsfliegen/ Gammariden/Käfer, Köcherflie- gen, vereinzelt Steinfliegen
Binnenkanal (RBK)	OGB 196 Rüthi - Strackacker	413 Ind./0.1 m ²	31 / 16	2.51	Familie: 49.8 % Art: 34.9 %	3	10	nicht erfüllt	Dominanz der Zuckmücken, wenig Eintagsfliegen/Würmer/ Gammariden, vereinzelt Köcherfliegen/Steinfliegen
	OGB 197 Oberriet - Güetli	519 Ind./0.1 m ²	51 / 21	3.89	Familie: 43.1 % Art: 37.1 %	3	15	erfüllt	Dominanz der Gammariden, viele Würmer/Wassermilben/ Käfer, wenig Köcherfliegen, vereinzelt Steinfliegen
Rheintaler	OGB 198 Oberriet - Dreier	2'320 Ind./0.1 m ²	39 / 18	2.89	Familie: 43.6 % Art: 35.8 %	3	12	nicht erfüllt	Dominanz der Gammariden/ Zuckmücken, viele Eintagsflie- gen/Käfer/Köcherfliegen, Was- sermilben, keine Steinfliegen
	OGB 199 Au - Monstein	730 Ind./0.1 m ²	32 / 10	3.19	Familie: 30.6 % Art: 18.3 %	3	12	nicht erfüllt	Dominanz der Zuckmücken, viele Gammariden/Würmer, wenig Käfer/Köcherfliegen, vereinzelt Steinfliegen
	OGB 200 Altstätten - Banriet	929 Ind./0.1 m ²	25/9	3.17	Familie: 36.4 % Art: 30.9 %	3	13	erfüllt	Dominanz der Eintagsfliegen/ Zuckmücken/Wassermilben, vereinzelt Steinfliegen
Rietaach	OGB 237 Altstätten - Banriet/ARA	466 Ind./0.1 m ²	26 / 10	2.89	Familie: 42.0 % Art: 28.4 %	2	13	erfüllt	Dominanz der Zuckmücken, wenig Eintagsfliegen, vereinzelt Steinfliegen
	OGB 201 Marbach - Anger	1'600 Ind./0.1 m ²	26 / 7	3.20	Familie: 34.1 % Art: 19.9 %	5	7	nicht erfüllt	Dominanz der Eintagsfliegen/ Zuckmücken/Kriebelmücken, keine Steinfliegen

Der **SPEAR**_{pesticide}-**Index** nahm je nach Bestimmungsniveau unterschiedliche Werte ein. Auf Familienniveau betrug der SPEAR_{pesticide}-Index 31 bis 50 % (Tab. 4.2). Wird der SPEAR-Index hingegen auf Artniveau berechnet, dann ergeben sich Werte zwischen 18 und 37 %. Dies entspricht einem unbefriedigenden bis guten Zustand. Es muss somit im Unterlauf von einer Pestizidbelastung ausgegangen werden.

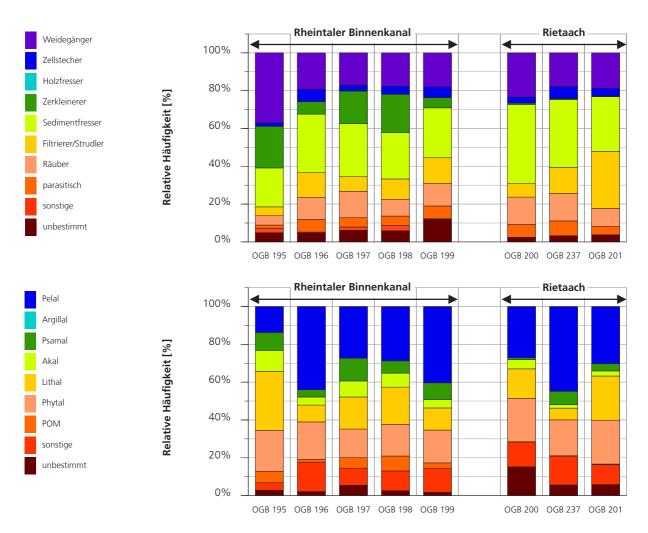


Abb. 4.2: Besiedlungsdichten (oben) und relative Häufigkeiten (unten) der Wasserwirbellosen an den untersuchten Stellen im Rheintaler Binnenkanal und in der Rietaach am 11. und 13. März 2015.

Gewässer	Gemeinde	Ortsbezeichnung	Stellenbezeichnung
Rheintaler Binnenkanal	Sennwald	Mädli	OGB 195
Rheintaler Binnenkanal	Rüthi	Strackacker	OGB 196
Rheintaler Binnenkanal	Oberriet	Güetli	OGB 197
Rheintaler Binnenkanal	Oberriet	Dreier	OGB 198
Rheintaler Binnenkanal	Au	Monstein	OGB 199
Rietaach	Altstätten	Banriet	OGB 200
Rietaach	Altstätten	Banriet/unterhalb ARA	OGB 237
Rietaach	Marbach	Anger	OGB 201

Der **IBCH** erreichte Werte zwischen 10 und 15 ein (Tab. 4.2). Damit indizierten die Wasserwirbellosen die Zustandsklassen 2 (gut) und 3 (mässig). Die ökologischen Ziele gemäss Gewässerschutzverordnung Anhang 1 werden somit für die Stellen OGB 195 - RBK - Sennwald - Mädli und OGB 197 - RBK - Oberriet - Güetli erreicht und für alle anderen Stellen nicht erfüllt.

Die Wasserwirbellosen indizieren somit beiden Stellen den OGB 195 - RBK - Sennwald - Mädli und OGB 197 - RBK - Oberriet - Güetli eine gute Lebensraumqualität. An den anderen drei Stellen ist die Lebensraumqualität hingegen ungenügend. Dieser schlechte gewässerökologische Zustand dürfte mehrere Ursachen haben. So trägt die schlechte Ökomorphologie, das geringe Gefälle, die weitgehend fehlende Beschattung, die vermutlich oft vorhandenen Trübungen (Baustellen, Hochwasserereignisse, Drainage etc.) wie auch die Siedlungs- und Strassenentwässerung (ARA's Sennwald, Rüthi, Oberriet, Altstätten und Au-Rosenbergsau sowie Hochwasserentlastungen etc.) zum schlechten Zustand bei. Eine Besonderheit bildet dabei die Stelle OGB 196 - RBK - Rüthi - Strackacker im revitalisierten Abschnitt. Vermutlich aufgrund der verbreiterten Gewässersohle und vielen strömungsberuhigten Bereichen kommt es zu einer vermehrten Ablagerung von Feinsedimenten (im Vergleich zu 2003). Dies wirkt sich direkt auf die Artenzusammensetzung und damit auf die Beurteilung der Lebensraumqualität aus.


Fazit:

Die Lebensgemeinschaften der Wasserwirbellosen im Rheintaler Binnenkanal erfüllen die ökologischen Ziele gemäss GSchV Anhang 1 an den beiden Stellen OGB 195 - RBK - Sennwald - Mädli und OGB 197 - RBK - Oberriet - Güetli, an den anderen drei Stellen sind die Ziele nicht erreicht. Es dominierten an allen Stellen Zuckmücken und Bachflohkrebse. Der Vergleich der Artengemeinschaften im Fliessverlauf und die pro Stelle eruierten Kennwerte (IBCH, Dominanzverhältnisse, SPEAR_{pesticide}-Index auf Artniveau) indizieren an allen Untersuchungsstellen mehr oder weniger beeinträchtigte Verhältnisse. Die Lebensgemeinschaften der Wasserwirbellosen sind daher nicht standortgerecht. Als Ursachen kommen morphologische wie auch stoffliche Faktoren in Frage. Neben den ARA Einleitungen sind mit grosser Wahrscheinlichkeit auch die schlechte Ökomorphologie, die fehlende Beschattung und der Eintrag an Trübstoffen verantwortlich.

Rietaach

Die **Gesamtindividuendichte** erreichte in der Rietaach mittlere—hohe Dichtewerte von 466 bis 1'600 Ind./0.1 m² (Tab. 4.2). **Die Taxazahlen** nahmen mit 25 bis 26 Taxa und die **Diversität** H mit Werten von 2.9 bis 3.2 mittlere Werte an. Die **Anzahl EPT** (Anzahl Arten an Eintagsfliegen-, Steinfliegen- und Köcherfliegenlarven) betrug pro Stelle zwischen 7 und 10 Taxa. Steinfliegen wurden nur an den oberen beiden Stellen nachgewiesen. Die Anzahl der Eintagsfliegen nahm entlang der Fliessstrecke von 6 auf 4 Taxa ab, die Anzahl Köcherfliegen im Gegenzug von 1 auf 3 Taxa zu. Insbesondere die filtrierende Gattung *Hydropsyche* kommt unterhalb der ARA (OGB 201 - Rietaach - Marbach - Anger) in deutlich erhöhten Mengen vor. Die Anzahl der EPT-Arten entspricht den Erwartungen, insbesondere

wenn der Indexwert IBCH, die morphologischen Strukturen sowie die Wasserqualität berücksichtigt werden.

Abb. 4.3: Ernährungstyp (oben) und Habitatpräferenz (unten) der Wasserwirbellosen an den untersuchten Stellen im Rheintaler Binnenkanal und in der Rietaach am 11. und 13. März 2015.

Gewässer	Gemeinde	Ortsbezeichnung	Stellenbezeichnung
Rheintaler Binnenkanal	Sennwald	Mädli	OGB 195
Rheintaler Binnenkanal	Rüthi	Strackacker	OGB 196
Rheintaler Binnenkanal	Oberriet	Güetli	OGB 197
Rheintaler Binnenkanal	Oberriet	Dreier	OGB 198
Rheintaler Binnenkanal	Au	Monstein	OGB 199
Rietaach	Altstätten	Banriet	OGB 200
Rietaach	Altstätten	Banriet/unterhalb ARA	OGB 237
Rietaach	Marbach	Anger	OGB 201

Die **dominierenden Organismengruppen** mit einem Anteil von mehr als 20 % an der Individuendichte in den Surberproben waren die Zuckmücken- und die Eintagsfliegenlarven (*Caenis sp.* und *Baetidae*). Sie machten an den drei Stellen zwischen 69 und 88 % aller Individuen aus (Abb. 4.2). Weitere häufige Gruppen

(> 5 %) waren die Wassermilben (*Hydracarina sp.*) und die Käfer (vor allem *Elmidae*). Würmer (*Oligochaeta*), Köcherfliegen (Trichoptera, *Hydropsychidae* und *Limnephilidae*) und Steinfliegen (*Leuctra sp.* und *Brachyptera sp.*) kamen nie in höheren Dichten vor. Die Dominanz der erwähnten Organismengruppen und das gleichzeitige nur spärliche Vorkommen von Steinfliegenlarven deuten darauf hin, dass an den untersuchten Stellen eine eher mässige Wasser- und Lebensraumqualität vorhanden sein muss.

Die vorhandenen Arten sind typisch für sandige bis verschlammte Lebensräume (Pelal, Psammal), Steinchoriotope (Lithal) sowie für pflanzliche (Phytal, Algen) Lebensräume. Es handelt sich zudem vor allem um Sedimentfresser und Weidegänger (48 bis 65 %, vgl. Abb. 4.3). Räuber und Filtrierer sind ebenfalls vorhanden und nehmen zusammen je nach Stelle 22 bis 40 % ein. Dabei zeigen die Filtrierer eine deutliche Zunahme entlang der Fliessstrecke. Die vorgefundenen Arten sind zu einem grossen Anteil (54 bis 81 %) bezüglich Strömungspräferenz indifferent und repräsentieren in geringem Masse strömende Verhältnisse (rheophil). Arten, welche stehendes oder schwach strömendes Milieu bevorzugen, kamen kaum vor.

Der **SPEAR**_{pesticide}-Index nahm je nach Bestimmungsniveau unterschiedliche Werte ein. Auf Familienniveau betrug der SPEAR_{pesticide}-Index 34 bis 42 % (Tab. 4.2). Wird der SPEAR-Index hingegen auf Artniveau berechnet, dann ergeben sich Werte zwischen 20 und 31 %. Dies entspricht einem unbefriedigenden bis mässigen Zustand. Es muss somit von einer Pestizidbelastung ausgegangen werden.

Der **IBCH** erreichte Werte zwischen 7 und 13 ein (Tab. 4.2). Damit indizieren die Wasserwirbellosen die Zustandsklassen 2 (gut) und 3 (mässig). Die ökologischen Ziele gemäss Gewässerschutzverordnung Anhang 1 werden somit für die Stellen OGB 200 - Rietaach - Altstätten - Banriet und OGB 237 - Rietaach - Altstätten - Banriet/unterhalb ARA erreicht und für die Stelle OGB 201 - Rietaach - Marbach - Anger nicht erfüllt.

Die Wasserwirbellosen indizieren somit an den beiden Stellen OGB 200 - Rietaach - Altstätten - Banriet und OGB 237 - Rietaach - Altstätten - Banriet/unterhalb ARA eine gute Lebensraumqualität. An der Stelle OBG 201 - Rietaach - Marbach - Anger ist die Lebensraumqualität hingegen ungenügend. Dieser schlechte gewässerökologische Zustand an der Stelle OGB 201 - Rietaach - Marbach - Anger wird dabei mit der ARA Altstätten in Verbindung gebracht. Der bessere IBCH-Wert an der Stelle OGB 237 - Rietaach - Altstätten - Banriet/unterhalb ARA wird mit der an dieser Stellen noch nicht stattgefundenen lateralen Durchmischung des gereinigten Abwassers in Verbindung gebracht. Somit stehen auf rund 2/3 der Gewässerbreite von der ARA, resp. von gereinigtem Abwasser unbeeinflusste Lebensräume zur Verfügung.

Fazit:

Die Lebensgemeinschaften der Wasserwirbellosen in der Rietaach erfüllen die ökologischen Ziele gemäss GSchV Anhang 1 an den oberen zwei Stellen, an der untersten Stelle OGB 201 - Rietaach - Marbach - Anger sind die Ziele nicht erreicht. Es dominierten an allen drei Stellen tolerante Eintagsfliegenlarven sowie Zuckmücken und andere Zweiflügler. Der Vergleich

der Artengemeinschaften im Fliessverlauf und die pro Stelle eruierten Kennwerte (IBCH, Dominanzverhältnisse, SPEAR_{pesticide}-Index auf Artniveau) indizieren an allen drei Untersuchungsstellen ungenügende gewässerökologische Verhältnisse. Die Lebensgemeinschaften der Wasserwirbellosen sind daher nicht standortgerecht. Als Ursachen kommen mehrere morphologische wie auch stoffliche Faktoren in Frage. Neben der ARA Altstätten sind mit grosser Wahrscheinlichkeit auch die schlechte Ökomorphologie, die fehlende Beschattung und der Eintrag an Trübstoffen verantwortlich.

4.4 Vergleich mit früheren Untersuchungen auf Niveau IBCH

Im Jahre 2003 wurde die Rietaach durch die Firma Ambio untersucht (AMBIO 2003). Damals wurde aber der IBCH-Wert noch nicht ermittelt. Für den Vergleich werden deshalb die plausibilisierten IBCH-Werte gemäss der Datenzusammenstellung in AQUAPLUS (2012) verwendet. Der Rheintaler Binnenkanal wurde 2009 und die Rietaach 2009 und 2014 erneut untersucht (AQUAPLUS 2009, AQUAPLUS 2014). Nicht alle Stellen aus dem Untersuchungsprogramm 2015 wurden bereits in allen früheren Untersuchungen berücksichtigt.

Bei der Interpretation der Resultate gilt zu beachten, dass nicht alle Probenahmen nach den heute gültigen Richtlinien und in den dafür definierten Zeitfenstern durchgeführt wurden. Die Probenahmen 2003 und 2009 wurden noch vor Erscheinen des aktuellen Methodenbeschriebs durchgeführt. Da das Verfahren zum Eruieren des IBCH-Wertes erst im Jahr 2010 erfolgte, wurde früher zum Teil abweichend beprobt (z. B. mehr Subsamples 2003). Dies bedeutet aber, dass oft mehr Taxa gefunden werden und damit auch einen höheren IBCH-Wert resultiert.

Die Probenahme 2014 erfolgte im Herbst und damit ausserhalb der IBCH Periode. Die meisten Wasserinsekten weisen einen saisonalen Zyklus sowohl mit aquatischen als auch mit terrestrischen Stadien auf. Je nach Zyklusstand sind die entsprechenden Taxa im Wasser gar nicht nachweisbar oder die Individuen zu klein für eine sichere Bestimmung. Dies führt zu Unterschieden in der Taxaliste und somit ebenfalls zu unterschiedlichen IBCH-Bewertungen. Somit sind für einen direkten Vergleich von Resultaten Probenahmen aus demselben Zeitraum notwendig.

Rheint. Binnenkanal

Die nachträglich berechneten IBCH-Werte 2003 weisen an allen Probenahmestellen die beste Bewertung der gesamten Messreihe auf. Dieser Umstand wird hauptsächlich der veränderten Probenahme zugeschrieben. Der Vergleich der Werte 2009 und 2015 (vergleichbare Probenahme, IBCH Zeitfenster) führt an zwei Stellen mit einer Verschlechterung von 2–4 IBCH-Stufen (OGB 196 - RBK - Rüthi - Strackacker und OGB 198 - RBK - Oberriet - Dreier) und an drei Stellen zu einer Verbesserung um 1–5 Stufen (OGB 195 - RBK - Sennwald - Mädli, OGB 197 - RBK - Oberriet - Güetli und OGB 199 - RBK - Au - Monstein).

An der obersten Stelle (OGB 195 - RBK - Sennwald - Mädli) sind die Werte 2009 und 2015 vergleichbar. Auffallend ist die Verschlechterung im revitalisierten Abschnitt von Rüthi SG (OGB 196 - RBK - Rüthi - Strackacker - Strackacker) um 4 Punkte. An dieser Stelle ist im Vergleich mit den Untersuchungen 2003 sogar ein

Abfallen des IBCH-Wertes um 10 Punkte zu beobachten. Trotz der ARA Rüthi sowie der Stauhaltung wurde an der Stelle OGB 197 - RBK - Oberriet - Güetli eine Verbesserung festgestellt. Der Wert 2015 ist 4 Punkte höher wie 2009 und liegt auf dem Niveau von 2003. In der Folge kommt es an der Stelle OGB 198 - RBK - Oberriet - Dreier zu einer Verschlechterung. An der untersten Stelle (OGB 199 - RBK - Au - Monstein) ist im Vergleich mit 2009 wieder eine Verbesserung um 5 Punkte feststellbar.

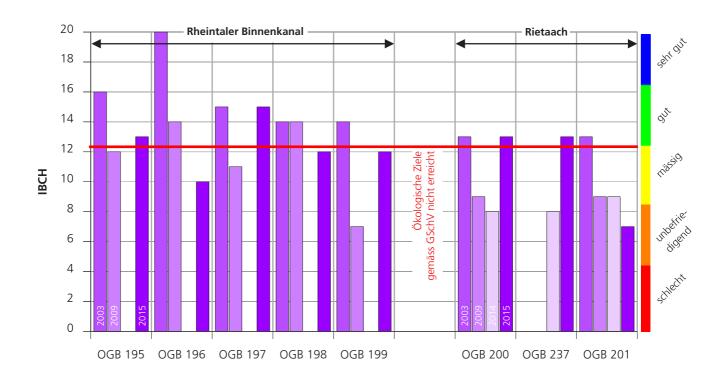


Abb. 4.4: Vergleich mit früheren Untersuchungen auf Niveau IBCH.

Die Farben 'blau', 'grün', 'gelb', 'orange' und 'rot' zeigen die fünf Zustandsklassen gemäss Modul Makrozoobenthos.

Rote Linie: Ökologische Ziele gemäss GSchV Anhang 1 (Bewertung gemäss BAFU Modul Makrozoobenthos, Stufe F, gemäss BAFU 2010). Die IBCH-Werte der früheren Untersuchungen wurden neu berechnet (plausibilisiert).

Gewässer	Gemeinde	Ortsbezeichnung	Stellenbezeichnung
Rheintaler Binnenkanal	Sennwald	Mädli	OGB 195
Rheintaler Binnenkanal	Rüthi	Strackacker	OGB 196
Rheintaler Binnenkanal	Oberriet	Güetli	OGB 197
Rheintaler Binnenkanal	Oberriet	Dreier	OGB 198
Rheintaler Binnenkanal	Au	Monstein	OGB 199
Rietaach	Altstätten	Banriet	OGB 200
Rietaach	Altstätten	Banriet/unterhalb ARA	OGB 237
Rietaach	Marbach	Anger	OGB 201

Rietaach

Während im Jahr 2003 die Rietaach an den beiden Untersuchungsstellen OGB 200 - Rietaach - Altstätten - Banriet und OGB 201 - Rietaach - Marbach

- Anger einen IBCH-Wert von 13 aufwies (Zustandsklasse 2 'gut'), sank der IBCH an allen drei Stellen in den Jahren 2009 und 2014 auf Werte von 8 resp. 9 (vgl. Abb. 4.4). 2015 wurde an den oberen beiden Stellen wieder ein Wert von 13 erreicht. An der untersten Stelle (OGB 201 - Rietaach - Marbach - Anger) sank der IBCH jedoch weiter bis auf einen Wert von 7 ab. An der untersten Stelle OGB 201 - Rietaach - Marbach - Anger scheint aber ein Trend vorhanden zu sein. In der ganzen Zeitreihe verschlechtert sich die Zusammensetzung der Wirbellosengemeinschaft und somit nimmt der IBCH kontinuierlich ab. Gründe für diese Verschlechterung des gewässerökologischen Zustandes zwischen den Jahren 2003 und 2009 sind nicht eindeutig und offensichtlich erkennbar. Dies auch daher nicht, weil die Rietaach bereits im Jahr 2003 begradigt war und die gereinigten Abwässer der ARA Altsätten bereits in die Rietaach flossen.

5 Literaturverzeichnis

- AMBIO (2004): Biologische Untersuchungen in den Einzugsgebieten der Goldach und des Rheintaler Binnenkanals. Im Auftrag des Amtes für Umweltschutz (AFU) des Kantons St. Gallen. 69 Seiten.
- AQUAPLUS (2009): Biologische Untersuchungen an Rheintaler Binnenkanal, Rietaach, Ländernaach und Seegraben (SG). Untersuchungen vom 21.02.2009 und 23.02.2009. Im Auftrag des Kantons St. Gallen. 126 S.
- AQUAPLUS (2012): Zoobenthosdaten des Kantons St. Gallen Eruieren und Plausibilisieren des Indikatorwertes IBCH gemäss BAFU Modul Zoobenthos (Stufe F) Methode, Stellenliste und IBCH-Werte. Im Auftrag des Kantons St. Gallen. 24 S.
- AQUAPLUS (2014): Rietaach 2014. Gewässerökologischer Einfluss des Hochwassers in Altstätten SG von Ende Juli 2014. Aufzeigen von Veränderungen im Vergleich zu früheren gewässerökologischen Zuständen. Im Auftrag des Kantons St. Gallen. 26 S.
- BAFU (2007a): Methoden zur Untersuchung und Beurteilung der Fliessgewässer: Äusserer Aspekt. Bundesamt für Umwelt, Bern, Umwelt-Vollzug Nr. 0701, 43 S.
- BAFU (2007b): Methoden zur Untersuchung und Beurteilung der Fliessgewässer: Kieselalgen Stufe F (flächendeckend). Bundesamt für Umwelt, Bern, Umwelt-Vollzug, Gewässerschutz 40/07, 58 S. und Anhänge.
- BAFU (2010): Methoden zur Untersuchung und Beurteilung der Fliessgewässer: Makrozoobenthos Stufe F (flächendeckend). Bundesamt für Umwelt, Bern, Umwelt-Vollzug Nr. 1026, 61 S
- LANDOLT E. (2010): Flora indicativa. Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. 2. Auflage. 375 S.
- LIESS M., SCHULZ R., BERENZEN N., NANKO-DREES J., WOGRAM J. (2001): Pflanzenschutzmittel Belastung und Lebensgemeinschaften in Fliessgewässern mit landwirtschaftlich genutztem Umland. TU Braunschweig. 227 S.
- THOMAS, E. A. & SCHANZ, F. (1976): Beziehungen zwischen Wasserchemismus und Primärproduktion in Fliessgewässern, ein limnologisches Problem. Vjsschr. Natf. Ges. Zürich, 121: 309-317.

ANHANG A

Stellendokumentation

Die erhobenen Daten wurden dem Auftraggeber zusätzlich elektronisch als Excelfile übergeben.

AquaPlus A-1

Aufnahme Biologie Fliessgewässer

Fliessgewässer SG 2015 RBK Rietaach

Gewässer
Probenahmestelle
Koordinaten
Datum
Witterung Probenahme
BearbeiterIn Feld

Rheintaler Binnenkanal	Gemein
OGB195	Ortsbez
756750 / 236250	Meeresl
11.03.2015	Zeit
sonnig	Witteru
AquaPlus AG - Hürlimann-Ra	gaz Joachim

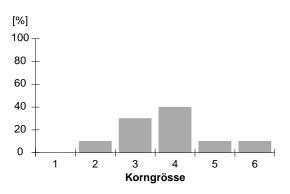
Gemeinde, Kantor
Ortsbezeichnung
Meereshöhe
Zeit
Witterung Vortage

Foto

Sennwald, SG	
Mädli	
430	
14.00 Uhr	
sonnig	

Hydrologische Angaben

Gewässertyp	Kanal
mittleres Gefälle [%]	0.3
natürlicher Abflussregimetyp	nivo-pluvial préalpin
Wasserführung	ständig
Grösse Einzugsgebiet [km²]	23
Art Einzugsgebiet [%]	Gebirge 32%, Wald 30%, Wiese/Weide 30%, Siedlungsgebiet 5%, Gewässer (Seen, etc.) 3%
Nutzung	keine


Kolmation

leicht/mittel (unbekannt)

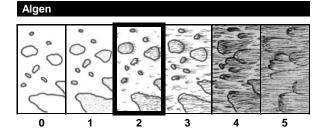
Blick aufwärts.

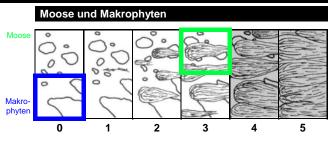
Korngrössenverteilung

Korngrössen: 1 = anstehender Fels und grösseres Gerölle; 2 = kopfgrosses Gerölle; 3 = Grobkies (faust- bis nussgross); 4 = Feinkies (nuss- bis erbsengross); 5 = Sand; 6 = Feinsand und Silt.

Uferbeschaffenheit

	links	rechts
Beurteilung Uferbereich	gewässerfremd	gewässerfremd
Ufertyp/Vegetation	Fettwiese	Fettwiese
Durchflossene Landschaft, näh. Einzugsgebiet (Anteil)	Landwirtschaft (gross)	Landwirtschaft (gross)
	Siedlungsgebiet (mittel)	
Verbauung Böschungsfuss	durchlässig, verbaut	durchlässig, verbaut
Verbauungstyp Böschungsfuss	Natursteine locker	Natursteine locker


vorhandene Choriotope

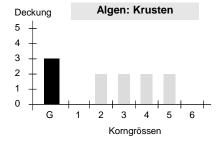

Choriotop (sortiert nach Häufigkeit)	Häufigkeit
Mikrolithal (Grobkies, 2-6.3 cm)	häufig (11-50%)
Moospolster	häufig (11-50%)
Mesolithal (Grobschotter, 6.3-20 cm)	häufig (11-50%)
Akal (Fein- / Mittelkies, 0.2-2 cm)	mittel (5-10%)
Megalithal (Fels, Steinblöcke > 40 cm)	wenig (<5%)

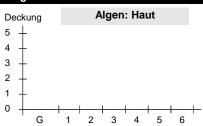
Äusserer Aspekt

Trübung	KEINE	geringe	mittlere	star	rke
Verfärbung	KEINE	leichte	mittlere	star	rke
Geruch	KEIN	gering	mittel	sta	ırk
Schaum (stabil)	KEIN	wenig	mittel	vie	el
Verschlammung	KEINE	leichte	mittlere	star	rke
makroskopisch sichtbare Pilze / Bakterien / Protozoen	KEINE ver- einzelt	we	nig	mittel	viel
anthropogene Eisensulfid-Flecken (Häufigkeit)	0%	1-10%	10-25%	>25	5%
Feststoffe aus Siedlungsentwässerung	KEINE	wenige	mittel	vie	el
Abfälle	KEINE	wenige	mittel	vie	ele

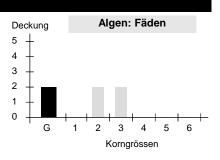
Pflanzlicher Bewuchs

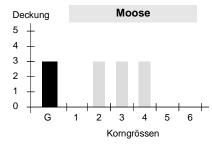
- 0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Zotten,
- 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen,
- 5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar. Abgeändert nach: THOMAS & SCHANZ (1976)

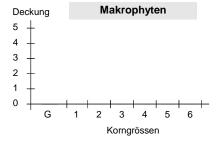

0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. Abgeändert nach: THOMAS & SCHANZ


Artenliste (dominante Formen)

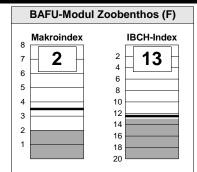
=																				
Al	gen	Sub			[Decl	kunç	g		Max. L	Moose / Makrophyten	Sub				Deck	kung)		Max. L
			Ges		Ko	rngı	röss	en		bzw.			Ges		Ko	rngr	röss	en		bzw.
W				1	2	3	4	5	6	Häuf.				1	2	3	4	5	6	Häuf.
K	Cyanophyceae (Blaualge)	S	1	0	1	1	1	0	0		Cinclidotus aquaticus (Moos)	S	3	0	3	3	3	0	0	>10
K	Bacillariophyceae (Kieselalgen)	S	3	0	2	2	2	2	0		Fontinalis antipyretica (Moos)	S	1	0	1	1	0	0	0	
F	Vaucheria sp. (Gelbgrünalge)	S	2	0	2	2	0	0	0	<=10	Hygroamblystegium tenax (Moos)	S	1	0	1	1	0	0	0	
F	Cladophora sp. (Grünalge)	S	1	0	1	1	0	0	0	<=10	Rhynchostegium riparioides (Moos)	S	1	0	1	1	0	0	0	

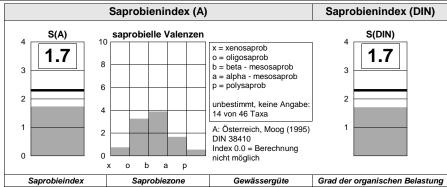

Tabellenwerte in Deckungs-Kategorien: 0 = frei von Bewuchs; 1 = 1-10% bedeckt; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Ges = Gesamtdeckung der Gewässersohle durch die betreffende Art. Korngrössen 1-6: Legende siehe unter "Korngrössenverteilung". W = Wuchsform: K = Kruste; H = Haut; F = Fäden (inkl. Kolonien oder Bänder von Diatomeen und Schläuche von z.B. Hydrurus foetidus); E = Epiphyten; Sub = Substrat; S = Stein; H = Holz; SI = Schlamm; A = Algen; M = Moose und Makrophyten. Max. L = Maximale Fadenlänge [cm]; Häuf. = Häufigkeit der Epiphyten: o = vereinzelt; oo = wenige; ooo = häufig; oooo = massenhaft.


Pflanzlicher Bewuchs auf den einzelnen Korngrössen



Korngrössen





Deckung 0 = frei von Bewuchs, 1 = 1-10% bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. G = Gesamtdeckung der Gewässersohle (alle Korngrössen). Korngrössen: 1-6 = Legende siehe unter "Korngrössenverteilung".

Wasserwirbellose

1.0 <= S < 1.5	oligosaprob	oligosaprob I unbelastet bis							
1.5 <= S < 1.8	oligo-beta-mesosaprob	oligo-beta-mesosaprob I - II ge							
1.8 <= S < 2.3 beta-mesosaprob II mässig belast									
2.3 <= S < 2.7	beta-alpha-mesosaprob	beta-alpha-mesosaprob II - III							
2.7 <= S < 3.2	alpha-mesosaprob	III	stark verschmutzt						
3.2 <= S < 3.5	alpha-meso-polysaprob	alpha-meso-polysaprob III - IV sehr stark v							
3.5 <= S < 4.0	polysaprob	IV	übermässig	verschmutzt					
2.7 <= S < 3.2 3.2 <= S < 3.5	alpha-mesosaprob alpha-meso-polysaprob polysaprob	III - IV	stark ver	verschmutz					

Beprobte Choriotope	Fliessges. m/s	Häufigkeit	Anzahl Surber-P	Anzahl Kick-P	Abgelesen X	Rohprobe
Mesolithal (Grobschotter, 6.3-20 cm)	0.75 - 0.25	häufig (11-50%)	1	0	0	1
Mikrolithal (Grobkies, 2-6.3 cm)	0.75 - 0.25	häufig (11-50%)	1	0	0	1
Moospolster	0.75 - 0.25	häufig (11-50%)	0	2	0	3
Moospolster	0.25 - 0.05	häufig (11-50%)	0	1	0	3
Akal (Fein- / Mittelkies, 0.2-2 cm)	0.75 - 0.25	mittel (5-10%)	0	1	0	3
Akal (Fein- / Mittelkies, 0.2-2 cm)	0.75 - 0.25	mittel (5-10%)	1	0	0	1
Megalithal (Fels, Steinblöcke > 40 cm)	0.75 - 0.25	wenig (<5%)	0	1	0	3

Taxazahl	46	Gesamt- häufigkeit [Ind./0.1m²]	1349
Diversität	3.36	Nassgew. [g/0.1m ²]	2.6

Individuendichte, IND

<5 Ind./0.1m² = äusserst gering, 6 - 25 = sehr gering, 26 - 100 = gering, 101 - 500 = mittel, 501 - 2'500 = mittel bis gross, 2'501 - 5'000 = gross, > 5'000 = sehr gross. IND = auf ganze Zahlen aufgerundete Dichtewerte

Taxa aus Proben von seltenen Choriotopen gehen ohne Individuendichte in die Taxaliste ein.

				4				
Taxaliste der Rohprobe 1 und Ergänz	ungen aus Probe 3	cf	S	IND	QS	Neoz.	RL	Probe
Dugesia sp.	Dugesiidae (Turbellaria, Strudelwurm)			12	1			1
Turbellaria [KI]	Turbellaria [KI] (Turbellaria, Strudelwurm)			37	1			1,3
Pisidium sp.	Sphaeriidae (Bivalvia, Muschel)			13	1			1
Naididae [Fam] Gen. sp.	Naididae (Oligochaeta, Wenigborster)			1	5			3
Oligochaeta [KI]	Oligochaeta [KI] (Oligochaeta, Wenigborster)			64	1			1,3
Tubificidae [Fam] Gen. sp.	Tubificidae (Oligochaeta, Wenigborster)			1	5			3
Gammarus fossarum KOCH, 1835	Gammaridae (Amphipoda, Bachflohkrebs)			172	1			1,3
Gammarus pulex (LINNAEUS, 1758)	Gammaridae (Amphipoda, Bachflohkrebs)			1	5			3
Gammarus sp.	Gammaridae (Amphipoda, Bachflohkrebs)			254	1			1,3
Baetis rhodani PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	1	5			3
Baetis sp. LEACH, 1815	Baetidae (Ephemeroptera, Eintagsfliege)		L	149	1			1,3
Ephemerella mucronata (BENGTSSON, 1909	Ephemerellidae (Ephemeroptera, Eintagsfliege	Х	L	1	1			1
Ephemerellidae [Fam]	Ephemerellidae (Ephemeroptera, Eintagsfliege		L	1	5			3
Serratella ignita (PODA, 1761)	Ephemerellidae (Ephemeroptera, Eintagsfliege		L	1	5			3
Habrophlebia lauta EATON, 1884	Leptophlebiidae (Ephemeroptera, Eintagsfliege		L	1	5			3
Habrophlebia sp. Schönemund, 1912	Leptophlebiidae (Ephemeroptera, Eintagsfliege		L	12	1			1
Leuctra sp.	Leuctridae (Plecoptera, Steinfliege)		L	1	5			3
Amphinemura sp.	Nemouridae (Plecoptera, Steinfliege)		L	1	5			3
Protonemura meyeri (PICTET, 1841)	Nemouridae (Plecoptera, Steinfliege)	Χ	L	1	5		VU	3
Elmis sp.	Elmidae (Coleoptera, Käfer)		L	240	1			1,3
Limnius sp.	Elmidae (Coleoptera, Käfer)		L	53	1			1
Stenelmis sp.	Elmidae (Coleoptera, Käfer)		L	12	1			1
Agapetus sp.	Glossosomatidae (Trichoptera, Köcherfliege)		L	1	1			1
Glossosomatidae [Fam] Gen. sp.	Glossosomatidae (Trichoptera, Köcherfliege)		L	49	1			1
Goeridae [Fam]	Goeridae (Trichoptera, Köcherfliege)		L	12	1			1
Hydropsyche sp.	Hydropsychidae (Trichoptera, Köcherfliege)		L	1	1			1,3
Potamophylax cingulatus (STEPHENS, 1837)	Limnephilidae (Trichoptera, Köcherfliege)		L	1	1			1
Potamophylax latipennis (CURTIS, 1834)	Limnephilidae (Trichoptera, Köcherfliege)	Х	L	1	5			3

AquaPlus AG

Rheintaler Binnenkanal / OGB195

Odontocerum albicorne (SCOPOLI, 1763)	Odontoceridae (Trichoptera, Köcherfliege)	L	1	5		3
Rhyacophila s.str. sp.	Rhyacophilidae (Trichoptera, Köcherfliege)	L	1	5		3
Rhyacophila tristis PICTET, 1834	Rhyacophilidae (Trichoptera, Köcherfliege)	L	1	1		1
Rhyacophilidae [Fam]	Rhyacophilidae (Trichoptera, Köcherfliege)	Р	1	5		3
Sericostoma flavicorne/personatum	Sericostomatidae (Trichoptera, Köcherfliege)	L	1	1		1,3
Trichoptera (kö.trag)	Trichoptera (Köchertragend) (Trichoptera, Köch	Р	1	1		1
Ceratopogoninae [UFam] Gen. sp.	Ceratopogonidae (Diptera, Gnitzen)	L	1	1		1
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)	L	186	1		1,3
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)	Р	1	5		3
Chironomini [Tribus]	Chironomidae (Diptera, Zuckmücken)	L	1	5		3
Prodiamesa olivacea (MEIGEN, 1818)	Chironomidae (Diptera, Zweiflügler)	L	1	5		3
Tanypodinae [UFam] Gen. sp.	Chironomidae (Diptera, Zuckmücken)	L	12	1		1,3
Tanytarsini [Tribus] Gen. sp.	Chironomidae (Diptera, Zuckmücken)	L	63	1		1,3
Chelifera sp.	Empididae (Diptera, Zweiflügler)	L	1	1		1
Dicranota sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	1	1		1,3
Eloeophila sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	1	1		1
Limoniinae [Ufam]	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	1	5		3
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)	L	1	5		3
Tipula sp.	Tipulidae (Diptera, Schnake)	L	1	1		1

cf: conferre, Bestimmung unklar. S: Stadium mit Ei = Ei, Gelege, Ex = Exuvie, ImL = Imago-Land, ImW = Imago-Wasser, juv = juvenil, K = Kokon, L = Larve, LL = Larve-Land, P = Puppe, Sim = Subimago. Zusatzangabe Geschlecht m = männlich, w = weiblich. Die Stadien Ex, ImL, LL und Sim werden bei den Indexberechnungen wie Taxazahl, Diversität, Gesamtindividuendichte, Makroindex, etc. nicht berücksichtigt. IND: Individuendichte pro 0.1m²., k.A. = keine Angabe möglich.

QS: Qualitätsstufe des angegebenen Zählwertes mit 1 = Taxon gezählt (Surber), 2 = Taxon gezählt (Kick), 3 = Taxon mit HK geschätzt, 4 = Taxon mit AK geschätzt, 5 = ergänzendes Taxon ohne Dichteangabe (1 = Standard). !: Der Originalzählwert des Taxon wird für die gewählte Auswertungsmethode mit einem angenäherten Wert

angegeben.

Neoz.: Neozoen, fremde Arten. RL: rote Liste Arten mit EX/RE = ausgestorben, CR = vom Aussterben bedroht, EN = stark gefährdet, VU = gefährdet bzw. verletzlich, NT = potentiell gefährdet, LC = nicht gefährdet, DD = ungenügende Datenlage.

Rheintaler Binnenkanal / OGB195 AquaPlus AG

Aufnahme Biologie Fliessgewässer

Fliessgewässer SG 2015 RBK Rietaach

Gewässer	Rheintaler Binnenkanal	Gemeinde, Kanton	Rüthi, SG
Probenahmestelle	OGB196	Ortsbezeichnung	Strackacker
Koordinaten	759150 / 240250	Meereshöhe	425
Datum	11.03.2015	Zeit	12.50 Uhr
Witterung Probenahme	bewölkt	Witterung Vortage	sonnig
BearbeiterIn Feld	AquaPlus AG - Hürlimann-Rag	gaz Joachim	

Hydrol	ogische	Angaben
--------	---------	---------

Gewässertyp	Kanal
mittleres Gefälle [%]	0.2
natürlicher Abflussregimetyp	nivo-pluvial préalpin
Wasserführung	ständig
Grösse Einzugsgebiet [km²]	37.6
Art Einzugsgebiet [%]	Wald 35%, Siedlungsgebiet 25%, Wiese/Weide 20%, Gebirge 19%, Gewässer (Seen, etc.) 1%
Nutzung	Vorfluter ARA

Kolmation

Kolmation
Skala BAFU Modul Äusserer Aspekt:
keine, mittel/leicht, stark
Skala AquaPlus: keine oder nur sehr
geringe, deutlich spürbare, starke, sehr
starke

leicht/mittel (unbekannt)

Foto

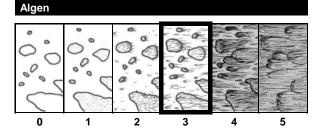
Blick abwärts.

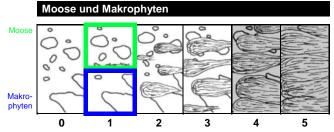
Korngrössenverteilung

Korngrössen: 1 = anstehender Fels und grösseres Gerölle; 2 = kopfgrosses Gerölle; 3 = Grobkies (faust- bis nussgross); 4 = Feinkies (nuss- bis erbsengross); 5 = Sand; 6 = Feinsand und Silt.

Uferbeschaffenheit

	links	rechts
Beurteilung Uferbereich	gewässergerecht	gewässergerecht
Ufertyp/Vegetation		Bäume/Sträucher standortgerecht
	Fettwiese	Fettwiese
Durchflossene Landschaft, näh. Einzugsgebiet (Anteil)	Landwirtschaft (klein)	Landwirtschaft (gross)
	Siedlungsgebiet (gross)	
Verbauung Böschungsfuss	durchlässig, verbaut	durchlässig, unverbaut
Verbauungstyp Böschungsfuss	Natursteine locker	
		unverbaut

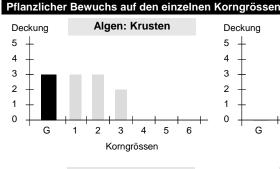

vorhandene Choriotope

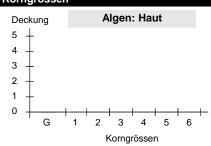

Choriotop (sortiert nach Häufigkeit)	Häufigkeit
Mikrolithal (Grobkies, 2-6.3 cm)	sehr häufig (>50%)
Mesolithal (Grobschotter, 6.3-20 cm)	häufig (11-50%)
Pelal (Schlick, Schluff, Schlamm)	häufig (11-50%)
Akal (Fein- / Mittelkies, 0.2-2 cm)	mittel (5-10%)
Phytal (amphibisch)	wenig (<5%)
Phytal (submers)	wenig (<5%)
Makrolithal (grosse Steine, 20-40 cm)	wenig (<5%)

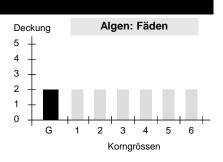
Äusserer Aspekt

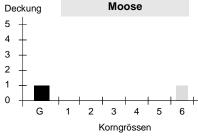
natürliche Trübung	keine	GERINGE	mittlere	starke	
natürliche Verfärbung	keine	LEICHTE	mittlere	starke	
Geruch	KEIN	gering	mittel	stark	
unbekannter Schaum (stabil)	kein	WENIG	mittel	viel	
unbekannte Verschlammung	keine	leichte	MITTLERE	starke	
unbekannte makroskopisch sichtbare Pilze / Bakterien / Protozoen	keine VER- EINZELT	we	nig	mittel	viel
unbekannte Eisensulfid-Flecken (Häufigkeit)	0%	1-10%	10-25%	>25%	
Feststoffe aus Siedlungsentwässerung	KEINE	wenige	mittel	viel	
Abfälle	KEINE	wenige mittel		viele	

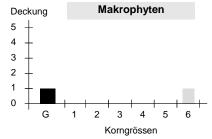
Pflanzlicher Bewuchs

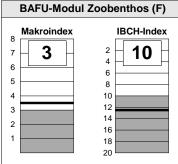


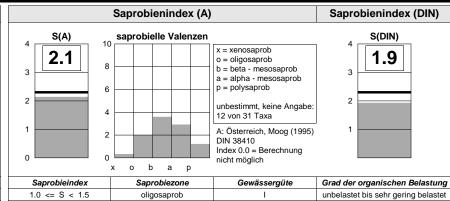

- 0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Zotten,
- 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen,
- 5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar. Abgeändert nach: THOMAS & SCHANZ (1976)
- 0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. Abgeändert nach: THOMAS & SCHANZ


Artenliste (dominante Formen)


Alg	gen	Sub	Sub Deckung		Deckung		Deckung N		Deckung Max. L Moose / Makrophyten		Moose / Makrophyten	Sub	ıb Deckun			cung	1		Max. L	
			Ges		Ko	Korngrössen		bzw.	. ,		Ges		Ko	rngr	össe	en		bzw.		
W				1	2	3	4	5	6	Häuf.				1	2	3	4	5	6	Häuf.
K	Cyanophyceae (Blaualge)	S	1	1	1	1	0	0	0		Rhynchostegium riparioides (Moos)	S	1	0	0	0	0	0	1	
K	Bacillariophyceae (Kieselalgen)	S	3	3	3	2	0	0	0		Chara globularis (Armleuchteralge)	S	1	0	0	0	0	0	1	
F	Vaucheria sp. (Gelbgrünalge)	S	2	2	2	2	2	2	2	<=10	Elodea canadensis (Wasserpest)	S	1	0	0	0	0	0	1	
											Groenlandia densa (Dichtes Laichkraut)	S	1	0	0	0	0	0	1	
											Phragmites australis (Schilf)	S	1	0	0	0	0	0	1	
											Veronica beccabunga (Bachbunge)	S	1	0	0	0	0	0	1	
											Zannichellia palustris (Sumpf-Teichfaden)	S	1	0	0	0	0	0	1	


Tabellenwerte in Deckungs-Kategorien: 0 = frei von Bewuchs; 1 = 1-10% bedeckt; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Ges = Gesamtdeckung der Gewässersohle durch die betreffende Art. Korngrössen 1-6: Legende siehe unter "Korngrössenverteilung". W = Wuchsform: K = Kruste; H = Haut; F = Fäden (inkl. Kolonien oder Bänder von Diatomeen und Schläuche von z.B. Hydrurus foetidus); E = Epiphyten; Sub = Substrat; S = Stein; H = Holz; SI = Schlamm; A = Algen; M = Moose und Makrophyten. Max. L = Maximale Fadenlänge [cm]; Häuf. = Häufigkeit der Epiphyten: o = vereinzelt; oo = wenige; ooo = häufig; oooo = massenhait.





Deckung 0 = frei von Bewuchs, 1 = 1-10% bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. G = Gesamtdeckung der Gewässersohle (alle Korngrössen). Korngrössen: 1-6 = Legende siehe unter "Korngrössenverteilung".

Makroindex	Ökol. Zustand	IBCH-Index
1 - 2	sehr gut	17 - 20
3	gut	13 - 16
4	mässig	9 - 12
5-6	unbefriedigend	5 - 8
7-8	schlecht	0 - 4

I - II

II - III

Ш

	3.5 <= 5 < 4.0	4.0 polysaprob		iv ubermassig v		verscrimutzt	
Beprobte Choriotope	Fliessges. m/s	Häufigkeit	Anzahl Surber-P	Anzahl Kick-P	Abgelesen X	Rohprobe	
Mikrolithal (Grobkies, 2-6.3 cm)	1.5 - 0.75	sehr häufig (>50%)	1	0	0	1	
Mikrolithal (Grobkies, 2-6.3 cm)	0.75 - 0.25	sehr häufig (>50%)	1	0	0	1	
Pelal (Schlick, Schluff, Schlamm)	0.25 - 0.05	häufig (11-50%)	0	1	0	3	
Akal (Fein- / Mittelkies, 0.2-2 cm)	0.25 - 0.05	mittel (5-10%)	0	1	0	3	
Makrolithal (grosse Steine, 20-40 cm)	0.75 - 0.25	wenig (<5%)	1	0	0	1	
Phytal (amphibisch)	0.25 - 0.05	wenig (<5%)	0	1	0	3	
Phytal (submers)	1.5 - 0.75	wenig (<5%)	0	1	0	3	
Phytal (submers)	0.75 - 0.25	wenig (<5%)	0	1	0	3	

oligo-beta-mesosaprob

beta-mesosaprob

beta-alpha-mesosaprob

alpha-mesosaprob

alpha-meso-polysaprob

1.5 <= S < 1.8

1.8 <= S < 2.3 2.3 <= S < 2.7

2.7 <= S < 3.2

3.2 <= S < 3.5

35 -- 9 - 10

Taxazahl	31	Gesamt- häufigkeit [Ind./0.1m²]	413
Diversität	2.51	Nassgew. [g/0.1m ²]	0.74

Individuendichte, IND

< 5 Ind./0.1m² = äusserst gering, 6 - 25 = sehr gering, 26 - 100 = gering, 101 - 500 = mittel, 501 - 2'500 = mittel bis gross, 2'501 - 5'000 = gross, > 5'000 = sehr gross. IND = auf ganze Zahlen aufgerundete Dichtewerte

gering belastet

mässig belastet

kritisch belastet

stark verschmutzt

sehr stark verschmutzt

Taxa aus Proben von seltenen Choriotopen gehen ohne Individuendichte in die Taxaliste ein.

				lacksquare				
Taxaliste der Rohprobe 1 und Ergär	zungen aus Probe 3	cf	S	IND	QS	Neoz.	RL	Probe
Oligochaeta [KI]	Oligochaeta [KI] (Oligochaeta, Wenigborster)			19	1			1,3
Helobdella stagnalis (LINNAEUS, 1761)	Glossiphoniidae (Hirudinea, Egel)			1	5			3
Hydracarina [Fam]	Hydracarina (Arachnida, Wassermilbe)			7	1			1,3
Gammarus fossarum KOCH, 1835	Gammaridae (Amphipoda, Bachflohkrebs)			7	1			1,3
Gammarus pulex (LINNAEUS, 1758)	Gammaridae (Amphipoda, Bachflohkrebs)			15	1			1
Gammarus sp.	Gammaridae (Amphipoda, Bachflohkrebs)			18	1			1,3
Baetidae [Fam]	Baetidae (Ephemeroptera, Eintagsfliege)		L	30	1			1,3
Baetis rhodani PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	6	1			1,3
Caenis sp. STEPHENS, 1835	Caenidae (Ephemeroptera, Eintagsfliege)		L	1	1			1
Ephemerellidae [Fam]	Ephemerellidae (Ephemeroptera, Eintagsfliege		L	1	5			3
Epeorus assimilis (PICTET, 1865)	Heptageniidae (Ephemeroptera, Eintagsfliege)		L	1	1			1
Nemurella pictetii KLAPALEK, 1900	Nemouridae (Plecoptera, Steinfliege)		L	1	1			1
Brachycentridae [Fam] Gen. sp.	Brachycentridae (Trichoptera, Köcherfliege)		L	1	1			1
Hydropsyche sp.	Hydropsychidae (Trichoptera, Köcherfliege)		L	1	5			3
Hydroptilidae [Fam]	Hydroptilidae (Trichoptera, Köcherfliege)		L	4	1			1
Limnephilidae [Fam]	Limnephilidae (Trichoptera, Köcherfliege)		L	1	5			3
Limnephilinae: Chaetopterygini + Stenophyla	ci Limnephilidae (Trichoptera, Köcherfliege)		L	1	1			1
Limnephilus lunatus CURTIS, 1834	Limnephilidae (Trichoptera, Köcherfliege)	Х	L	1	5			3
Limnephilus sp.	Limnephilidae (Trichoptera, Köcherfliege)		L	1	5			3
Psychomyiidae [Fam] Gen. sp.	Psychomyiidae (Trichoptera, Köcherfliege)		L	1	1			1
Tinodes sp.	Psychomyiidae (Trichoptera, Köcherfliege)		L	4	1			1
Rhyacophila s.str. sp.	Rhyacophilidae (Trichoptera, Köcherfliege)		L	1	1			1
Ceratopogonidae [Fam]	Ceratopogonidae (Diptera, Gnitzen)		L	1	5			3
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)		L	231	1			1,3
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)		Р	4	1			1,3
Chironomini [Tribus]	Chironomidae (Diptera, Zuckmücken)		L	4	1			1,3
Tanypodinae [UFam] Gen. sp.	Chironomidae (Diptera, Zuckmücken)		L	36	1			1,3

Tanytarsini [Tribus] Gen. sp.	Chironomidae (Diptera, Zuckmücken)	L	17	1		1,3
Chelifera sp.	Empididae (Diptera, Zweiflügler)	L	1	5		3
Antocha sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	4	1		1
Dicranota sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	2	1		1
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)	L	2	1		1,3
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)	P	1	5		3

cf: conferre, Bestimmung unklar. S: Stadium mit Ei = Ei, Gelege, Ex = Exuvie, ImL = Imago-Land, ImW = Imago-Wasser, juv = juvenil, K = Kokon, L = Larve, LL = Larve-Land, P = Puppe, Sim = Subimago. Zusatzangabe Geschlecht m = männlich, w = weiblich. Die Stadien Ex, ImL, LL und Sim werden bei den Indexberechnungen wie Taxazahl, Diversität, Gesamtindividuendichte, Makroindex, etc. nicht berücksichtigt. IND: Individuendichte pro 0.1m²., k.A. = keine Angabe möglich.

QS: Qualitätsstufe des angegebenen Zählwertes mit 1 = Taxon gezählt (Surber), 2 = Taxon gezählt (Kick), 3 = Taxon mit HK geschätzt, 4 = Taxon mit AK geschätzt, 5 = ergänzendes Taxon ohne Dichteangabe (1 = Standard). !: Der Originalzählwert des Taxon wird für die gewählte Auswertungsmethode mit einem angenäherten Wert

Rheintaler Binnenkanal / OGB196 AquaPlus AG

Neoz.: Neozoen, fremde Arten. RL: rote Liste Arten mit EX/RE = ausgestorben, CR = vom Aussterben bedroht, EN = stark gefährdet, VU = gefährdet bzw. verletzlich, NT = potentiell gefährdet, LC = nicht gefährdet, DD = ungenügende Datenlage.

Aufnahme Biologie Fliessgewässer

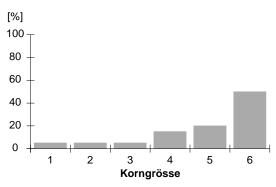
Fliessgewässer SG 2015 RBK Rietaach

Gewässer	Rheintaler Binnenkanal	Gemeinde, Kanton	Oberriet, SG	
Probenahmestelle	OGB197	Ortsbezeichnung	Güetli	
Koordinaten	760750 / 241600	Meereshöhe	420	
Datum	11.03.2015	Zeit	11.45 Uhr	
Witterung Probenahme	bewölkt	Witterung Vortage	sonnig	
BearbeiterIn Feld	AquaPlus AG - Hürlimann-Ragaz Joachim			

Hvd	Irolog	gische	Anga	hen
		giocito	- III G G	

Gewässertyp	Kanal
mittleres Gefälle [%]	0.2
natürlicher Abflussregimetyp	nivo-pluvial préalpin
Wasserführung	ständig
Grösse Einzugsgebiet [km²]	40.1
Art Einzugsgebiet [%]	Wald 35%, Siedlungsgebiet 25%, Wiese/Weide 20%, Gebirge 19%, Gewässer (Seen, etc.) 1%
Nutzung	Wasserkraft, Vorfluter ARA

Kolmation


Kolillation
Skala BAFU Modul Äusserer Aspekt:
keine, mittel/leicht, stark
Skala AquaPlus: keine oder nur sehr
geringe, deutlich spürbare, starke, sehr
starke

stark (anthropogen)

Foto

Blick aufwärts.

Korngrössenverteilung

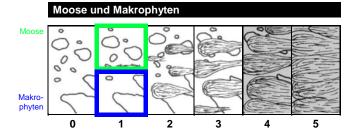
Korngrössen: 1 = anstehender Fels und grösseres Gerölle; 2 = kopfgrosses Gerölle; 3 = Grobkies (faust- bis nussgross); 4 = Feinkies (nuss- bis erbsengross); 5 = Sand; 6 = Feinsand und Silt.

Uferbeschaffenheit

	links	rechts
Beurteilung Uferbereich	gewässergerecht	gewässergerecht
Ufertyp/Vegetation	Röhricht/Ried	Röhricht/Ried
Durchflossene Landschaft, näh. Einzugsgebiet (Anteil)	Wald/Hecke (klein)	Wald/Hecke (klein)
	Landwirtschaft (mittel)	Landwirtschaft (klein)
	Siedlungsgebiet (mittel)	Siedlungsgebiet (klein)
Verbauung Böschungsfuss	durchlässig, verbaut	durchlässig, verbaut
Verbauungstyp Böschungsfuss	Lebendverbau	Lebendverbau
	Natursteine locker	Natursteine locker

vorhandene Choriotope

Choriotop (sortiert nach Häufigkeit)	Häufigkeit
Mikrolithal (Grobkies, 2-6.3 cm)	häufig (11-50%)
Phytal (Makrophyten)	häufig (11-50%)
Akal (Fein- / Mittelkies, 0.2-2 cm)	häufig (11-50%)
Psammal (Sand, 0.006 -0.2 cm)	mittel (5-10%)
Phytal (amphibisch)	mittel (5-10%)
Pelal (Schlick, Schluff, Schlamm)	wenig (<5%)
Makrolithal (grosse Steine, 20-40 cm)	wenig (<5%)


Äusserer Aspekt natürliche Trübung mittlere **GERINGE** starke keine natürliche Verfärbung keine LEICHTE mittlere starke Geruch KEIN gering mittel stark Schaum (stabil) KEIN mittel viel wenig KEINE Verschlammung leichte mittlere starke makroskopisch sichtbare Pilze / Bakterien / wenig mittel Protozoen einzelt unbekannte Eisensulfid-Flecken (Häufigkeit) 1-10% 10-25% >25% Feststoffe aus Siedlungsentwässerung KEINE mittel viel

keine

Pflanzlicher Bewuchs

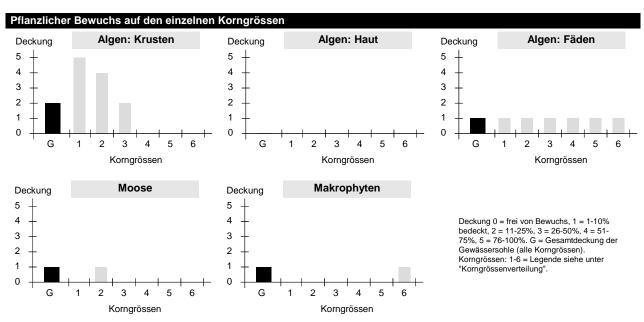
Abfälle

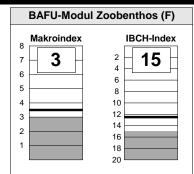
Algen 00 0 00 0 2 5

mittel

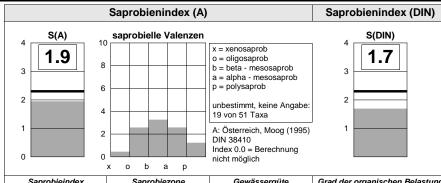
viele

weniae


WENIGE


- 0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Zotten,
- 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen,
- 5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar. Abgeändert nach: THOMAS & SCHANZ (1976)

0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%3 = 26-50%, 4 = 51-75%, 5 = 76-100%. Abgeändert nach: THOMAS & SCHANZ


Artenliste (dominante Formen) Sub Deckung Max. L Sub Deckung Max. L Algen Moose / Makrophyten Ges Kornarössen bzw Ges Kornarössen bzw. 2 3 4 5 6 Häuf. 2 3 4 5 6 Häuf. Cyanophyceae (Blaualge) S 0 0 0 Fontinalis antipyretica (Moos) 0 0 0 Bacillariophyceae (Kieselalgen) S 2 0 0 Elodea canadensis (Wasserpest) S 0 0 0 0 Hildenbrandia rivularis (Rotalge) 0 0 0 Groenlandia densa (Dichtes Laichkraut) 0 0 0 0 Vaucheria sp. (Gelbgrünalge) S 1 1 1 1 1 Zannichellia palustris (Sumpf-Teichfaden) 0 0 0 0 0 1 Cladophora sp. (Grünalge) S 0 0 0 0

Tabellenwerte in Deckungs-Kategorien: 0 = frei von Bewuchs; 1 = 1-10% bedeckt; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Ges = Gesamtdeckung der Gewässersohle durch die betreffende Art. Korngrössen 1-6: Legende siehe unter "Korngrössenverteilung". W = Wuchsform: K = Kruste; H = Haut; F = Fäden (inkl. Kolonien oder Bänder von Diatomeen und Schläuche von z.B. Hydrurus foetidus); E = Epiphyten; Sub = Substrat; S = Stein; H = Holz; SI = Schlamm; A = Algen; M = Moose und Makrophyten. Max. L = Maximale Fadenlänge [cm]; Häuf. = Häufigkeit der Epiphyten: o = vereinzelt; oo = wenige; ooo = häufig; oooo = massenhaft

Makroindex	Ökol. Zustand	IBCH-Index
1 - 2	sehr gut	17 - 20
3	gut	13 - 16
4	mässig	9 - 12
5-6	unbefriedigend	5 - 8
7-8	schlecht	0 - 4

Saprobieindex	Saprobiezone	Gewässergüte	Grad der organischen Belastung
1.0 <= S < 1.5	oligosaprob	Į.	unbelastet bis sehr gering belastet
1.5 <= S < 1.8	oligo-beta-mesosaprob	1 - 11	gering belastet
1.8 <= S < 2.3	beta-mesosaprob	П	mässig belastet
2.3 <= S < 2.7	beta-alpha-mesosaprob	-	kritisch belastet
2.7 <= S < 3.2	alpha-mesosaprob	III	stark verschmutzt
3.2 <= S < 3.5	alpha-meso-polysaprob	III - IV	sehr stark verschmutzt
3.5 <= S < 4.0	polysaprob	IV	übermässig verschmutzt

Beprobte Choriotope	Fliessges. m/s	Häufigkeit	Anzahl Surber-P	Anzahl Kick-P	Abgelesen X	Rohprobe
Akal (Fein- / Mittelkies, 0.2-2 cm)	< 0.05	häufig (11-50%)	1	0	0	1
Mikrolithal (Grobkies, 2-6.3 cm)	0.25 - 0.05	häufig (11-50%)	1	0	0	1
Mikrolithal (Grobkies, 2-6.3 cm)	< 0.05	häufig (11-50%)	0	1	0	3
Mikrolithal (Grobkies, 2-6.3 cm)	< 0.05	häufig (11-50%)	1	0	0	1
Phytal (Makrophyten)	< 0.05	häufig (11-50%)	0	1	0	3
Phytal (amphibisch)	< 0.05	mittel (5-10%)	0	1	0	3
Psammal (Sand, 0.006 -0.2 cm)	< 0.05	mittel (5-10%)	0	2	0	3

Taxazahl	51	Gesamt- häufigkeit [Ind./0.1m ²]	519
Diversität	3.89	Nassgew. [g/0.1m ²]	1.9

Individuendichte, IND

<5 Ind./0.1m² = äusserst gering, 6 - 25 = sehr gering, 26 - 100 = gering, 101 - 500 = mittel, 501 - 2'500 = mittel bis gross, 2'501 - 5'000 = gross, > 5'000 = sehr gross. IND = auf ganze Zahlen aufgerundete Dichtewerte

Taxa aus Proben von seltenen Choriotopen gehen ohne Individuendichte in die Taxaliste ein.

			V					
Taxaliste der Rohprobe 1 und Ergä	cf	S	IND	QS	Neoz.	RL	Probe	
Bithynia sp.	Bithyniidae (Gastropoda, Schnecke)			7	1			1
Hydrobiidae [Fam]	Hydrobiidae (Gastropoda, Schnecke)			1	5			3
Physidae [Fam] Gen. sp.	Physidae (Gastropoda, Schnecke)			1	5			3
Pisidium sp.	Sphaeriidae (Bivalvia, Muschel)			1	1			1,3
Eiseniella tetraedra (SAVIGNY, 1826)	Lumbricidae (Oligochaeta, Wenigborster)			1	1			1
Oligochaeta [KI]	Oligochaeta [KI] (Oligochaeta, Wenigborster)			27	1			1,3
Glossiphonia sp.	Glossiphoniidae (Hirudinea, Egel)			1	1			1,3
Glossiphoniidae [Fam]	Glossiphoniidae (Hirudinea, Egel)			1	1			1
Helobdella stagnalis (LINNAEUS, 1761)	Glossiphoniidae (Hirudinea, Egel)			1	5			3
Hydracarina [Fam]	Hydracarina (Arachnida, Wassermilbe)			31	1			1,3
Gammarus fossarum KOCH, 1835	Gammaridae (Amphipoda, Bachflohkrebs)			33	1			1,3
Gammarus sp.	Gammaridae (Amphipoda, Bachflohkrebs)			90	1			1,3
Baetidae [Fam]	Baetidae (Ephemeroptera, Eintagsfliege)		L	1	1			1,3
Baetis rhodani PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	1	1			1,3
Ephemera danica MÜLLER, 1764	Ephemeridae (Ephemeroptera, Eintagsfliege)		L	14	1			1
Nemouridae [Fam]	Nemouridae (Plecoptera, Steinfliege)		L	1	5			3
Nemurella pictetii KLAPALEK, 1900	Nemouridae (Plecoptera, Steinfliege)		L	1	5			3
Dytiscidae [Fam]	Dytiscidae (Coleoptera, Käfer)		L	1	5			3
Elmidae [Fam]	Elmidae (Coleoptera, Käfer)		L	1	1			1
Elmis sp.	Elmidae (Coleoptera, Käfer)		L	23	1			1
Esolus sp.	Elmidae (Coleoptera, Käfer)		L	11	1			1
Limnius sp.	Elmidae (Coleoptera, Käfer)		L	1	1			1
Potamophilus sp.	Elmidae (Coleoptera, Käfer)		ImW	1	1			1
Corixidae [Fam] Gen. sp.	Corixidae (Heteroptera, Wanzen)		L	1	5			3
Sialis sp.	Sialidae (Megaloptera, Schlammfliege)		L	2	1			1
Goeridae [Fam]	Goeridae (Trichoptera, Köcherfliege)		L	4	1			1
Hydropsyche sp.	Hydropsychidae (Trichoptera, Köcherfliege)		L	1	1			1
Halesus radiatus (CURTIS, 1834)	Limnephilidae (Trichoptera, Köcherfliege)		L	1	5			3

Limnephilidae [Fam]	Limnephilidae (Trichoptera, Köcherfliege)	L	16	1		1,3
Limnephilinae [UFam]	Limnephilidae (Trichoptera, Köcherfliege)	L	1	5		3
Limnephilus sp.	Limnephilidae (Trichoptera, Köcherfliege)	L	1	5		3
Potamophylax latipennis (CURTIS, 1834)	Limnephilidae (Trichoptera, Köcherfliege)	L	1	1		1
Potamophylax sp.	Limnephilidae (Trichoptera, Köcherfliege)	L	1	1		1
Odontocerum albicorne (SCOPOLI, 1763)	Odontoceridae (Trichoptera, Köcherfliege)	L	1	5		3
Polycentropodidae [Fam]	Polycentropodidae (Trichoptera, Köcherfliege)	L	4	1		1,3
Polycentropus flavomaculatus (PICTET, 183	4) Polycentropodidae (Trichoptera, Köcherfliege)	L	1	5		3
Lype reducta (HAGEN, 1868)	Psychomyiidae (Trichoptera, Köcherfliege)	L	1	1		1
Psychomyiidae [Fam] Gen. sp.	Psychomyiidae (Trichoptera, Köcherfliege)	L	4	1		1
Rhyacophila s.str. sp.	Rhyacophilidae (Trichoptera, Köcherfliege)	L	4	1		1
Rhyacophilidae [Fam]	Rhyacophilidae (Trichoptera, Köcherfliege)	Р	1	1		1
Sericostoma flavicorne/personatum	Sericostomatidae (Trichoptera, Köcherfliege)	L	4	1		1,3
Ceratopogonidae [Fam]	Ceratopogonidae (Diptera, Gnitzen)	L	19	1		1,3
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)	L	62	1		1,3
Chironomini [Tribus]	Chironomidae (Diptera, Zuckmücken)	L	14	1		1
Tanypodinae [UFam] Gen. sp.	Chironomidae (Diptera, Zuckmücken)	L	30	1		1,3
Tanytarsini [Tribus] Gen. sp.	Chironomidae (Diptera, Zuckmücken)	L	87	1		1,3
Empididae [Fam] Gen. sp.	Empididae (Diptera, Zweiflügler)	L	1	1		1
Antocha sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	23	1		1,3
Limoniidae [Fam]	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	1	5		3
Psychodidae [Fam] Gen. sp.	Psychodidae (Diptera, Zweiflügler)	L	4	1		1
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)	L	1	5		3

Rheintaler Binnenkanal / OGB197 AquaPlus AG

cf: conferre, Bestimmung unklar. S: Stadium mit Ei = Ei, Gelege, Ex = Exuvie, ImL = Imago-Land, ImW = Imago-Wasser, juv = juvenil, K = Kokon, L = Larve, LL = Larve-Land, P = Puppe, Sim = Subimago. Zusatzangabe Geschlecht m = männlich, w = weiblich. Die Stadien Ex, ImL, LL und Sim werden bei den Indexberechnungen wie Taxazahl, Diversität, Gesamtindividuendichte, Makroindex, etc. nicht berücksichtigt. IND: Individuendichte pro 0.1m²., k.A. = keine Angabe möglich.

QS: Qualitätsstufe des angegebenen Zählwertes mit 1 = Taxon gezählt (Surber), 2 = Taxon gezählt (Kick), 3 = Taxon mit HK geschätzt, 4 = Taxon mit AK geschätzt, 5 = ergänzendes Taxon ohne Dichteangabe (1 = Standard). !: Der Originalzählwert des Taxon wird für die gewählte Auswertungsmethode mit einem angenäherten Wert angegeben.

Neoz.: Neozoen, fremde Arten. RL: rote Liste Arten mit EX/RE = ausgestorben, CR = vom Aussterben bedroht, EN = stark gefährdet, VU = gefährdet bzw. verletzlich, NT = potentiell gefährdet, LC = nicht gefährdet, DD = ungenügende Datenlage.

Aufnahme Biologie Fliessgewässer

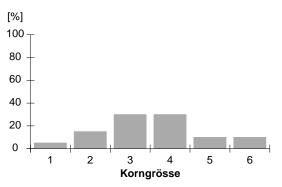
Fliessgewässer SG 2015 RBK Rietaach

Gewässer	Rheintaler Binnenkanal	Gemeinde, Kanton	Oberriet, SG		
Probenahmestelle	OGB198	Ortsbezeichnung	Dreier		
Koordinaten	761920 / 246250	Meereshöhe	414		
Datum	11.03.2015	Zeit	10.00 Uhr		
Witterung Probenahme	bewölkt	Witterung Vortage	bewölkt		
BearbeiterIn Feld	AquaPlus AG - Hürlimann-Ragaz Joachim				

Gewässertyp	Kanal
mittleres Gefälle [%]	0.6
natürlicher Abflussregimetyp	nivo-pluvial préalpin
Wasserführung	ständig
Grösse Einzugsgebiet [km²]	71.2
Art Einzugsgebiet [%]	Wiese/Weide 52%, Wald 25%, Siedlungsgebiet 15%, Gebirge 8%
Nutzung	Wasserkraft, Vorfluter ARA

Kolmation

Nomination
Skala BAFU Modul Äusserer Aspekt:
keine, mittel/leicht, stark
Skala AquaPlus: keine oder nur sehr
geringe, deutlich spürbare, starke, sehr
starke


leicht/mittel (anthropogen)

Foto

Blick abwärts.

Korngrössenverteilung

Korngrössen: 1 = anstehender Fels und grösseres Gerölle; 2 = kopfgrosses Gerölle; 3 = Grobkies (faust- bis nussgross); 4 = Feinkies (nuss- bis erbsengross); 5 = Sand; 6 = Feinsand und Silt.

vorhandene Choriotope

Choriotop (sortiert nach Häufigkeit)	Häufigkeit
Mikrolithal (Grobkies, 2-6.3 cm)	sehr häufig (>50%)
Moospolster	häufig (11-50%)
Mesolithal (Grobschotter, 6.3-20 cm)	häufig (11-50%)
Akal (Fein- / Mittelkies, 0.2-2 cm)	wenig (<5%)
Makrolithal (grosse Steine, 20-40 cm)	wenig (<5%)
Phytal (amphibisch)	wenig (<5%)

Uferbeschaffenheit

	links	rechts
Beurteilung Uferbereich	gewässerfremd	gewässerfremd
Ufertyp/Vegetation	Fettwiese	Fettwiese
Durchflossene Landschaft, näh. Einzugsgebiet (Anteil)	Landwirtschaft (gross)	Landwirtschaft (gross)
	Streusiedlung (klein)	Streusiedlung (klein)
Verbauung Böschungsfuss	durchlässig, verbaut	durchlässig, verbaut
Verbauungstyp Böschungsfuss	Natursteine locker	Natursteine locker

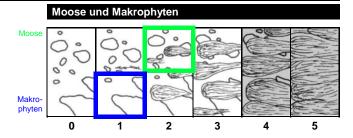
Äusserer Aspekt anthropogene Trübung mittlere **GERINGE** starke keine anthropogene Verfärbung keine LEICHTE mittlere starke KEIN Geruch gering mittel stark unbekannter Schaum (stabil) kein WENIG mittel viel KEINE Verschlammung leichte mittlere starke makroskopisch sichtbare Pilze / Bakterien / wenig mittel Protozoen einzelt unbekannte Eisensulfid-Flecken (Häufigkeit) 1-10% 10-25% >25%

KEINE

keine

weniae

WENIGE


Potamogeton crispus (Krauses Laichkraut)

Zannichellia palustris (Sumpf-Teichfaden)

Pflanzlicher Bewuchs

Abfälle

Algen 00 0 00 0 2 5

mittel

mittel

viel

viele

0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Zotten,

Feststoffe aus Siedlungsentwässerung

- 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen,

S

S 1 2 2 2 0 0

1

1

0 0 0 0

5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar. Abgeändert nach: THOMAS & SCHANZ (1976)

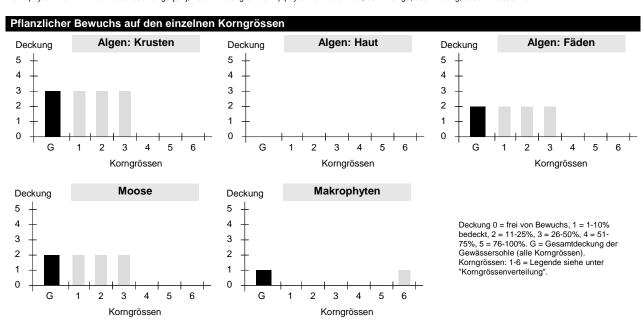
Vaucheria sp. (Gelbgrünalge)

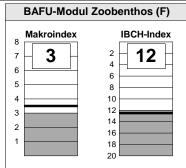
Cladophora glomerata (Grünalge)

0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%3 = 26-50%, 4 = 51-75%, 5 = 76-100%. Abgeändert nach: THOMAS & SCHANZ

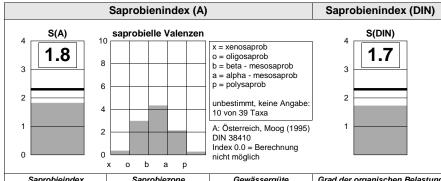
S

S


0 0 0 0 0


0

0 0 0 0


Artenliste (dominante Formen) Sub Deckung Max. L Sub Deckung Max. L Algen Moose / Makrophyten Ges Kornarössen bzw Ges Kornarössen bzw. 2 3 4 5 6 Häuf. 2 3 4 5 6 Häuf. Cyanophyceae (Blaualge) S 0 0 Fontinalis antipyretica (Moos) 2 0 0 <=10 Gongrosira sp. (Grünalge) S 0 0 0 Berula erecta (Berle) S 0 0 0 Bacillariophyceae (Kieselalgen) 3 3 0 0 Elodea nuttallii (Wasserpest) S 0 0 0 0 K Hildenbrandia rivularis (Rotalge) S 0 1 0 0 0 0 Groenlandia densa (Dichtes Laichkraut) S 0 0 0 0 1

Tabellenwerte in Deckungs-Kategorien: 0 = frei von Bewuchs; 1 = 1-10% bedeckt; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Ges = Gesamtdeckung der Gewässersohle durch die betreffende Art. Korngrössen 1-6: Legende siehe unter "Korngrössenverteilung". W = Wuchsform: K = Kruste; H = Haut; F = Fäden (inkl. Kolonien oder Bänder von Diatomeen und Schläuche von z.B. Hydrurus foetidus); E = Epiphyten; Sub = Substrat; S = Stein; H = Holz; SI = Schlamm; A = Algen; M = Moose und Makrophyten. Max. L = Maximale Fadenlänge [cm]; Häuf. = Häufigkeit der Epiphyten: o = vereinzelt; oo = wenige; ooo = häufig; oooo = massenhaft

Makroindex	Ökol. Zustand	IBCH-Index
1 - 2	sehr gut	17 - 20
3	gut	13 - 16
4	mässig	9 - 12
5-6	unbefriedigend	5 - 8
7-8	schlecht	0 - 4

Saprobieindex	Saprobiezone	Gewässergüte	Grad der organischen Belastung
1.0 <= S < 1.5	oligosaprob	1	unbelastet bis sehr gering belastet
1.5 <= S < 1.8	oligo-beta-mesosaprob	I - II	gering belastet
1.8 <= S < 2.3	beta-mesosaprob	II	mässig belastet
2.3 <= S < 2.7	beta-alpha-mesosaprob	II - III	kritisch belastet
2.7 <= S < 3.2	alpha-mesosaprob	III	stark verschmutzt
3.2 <= S < 3.5	alpha-meso-polysaprob	III - IV	sehr stark verschmutzt
3.5 <= S < 4.0	polysaprob	IV	übermässig verschmutzt

Beprobte Choriotope	Fliessges. m/s	Häufigkeit	Anzahl Surber-P	Anzahl Kick-P	Abgelesen X	Rohprobe
Mesolithal (Grobschotter, 6.3-20 cm)	0.25 - 0.05	häufig (11-50%)	0	1	0	3
Moospolster	1.5 - 0.75	häufig (11-50%)	1	0	0	1
Moospolster	0.25 - 0.05	häufig (11-50%)	0	1	0	3
Makrolithal (grosse Steine, 20-40 cm)	1.5 - 0.75	wenig (<5%)	1	0	0	1
Makrolithal (grosse Steine, 20-40 cm)	0.75 - 0.25	wenig (<5%)	1	0	0	1
Makrolithal (grosse Steine, 20-40 cm)	0.25 - 0.05	wenig (<5%)	0	2	0	3
Phytal (amphibisch)	0.25 - 0.05	wenig (<5%)	0	1	0	3

Taxazahl	39	Gesamt- häufigkeit [Ind./0.1m²]	2320
Diversität	2.89	Nassgew. [g/0.1m ²]	1.5

Individuendichte, IND

< 5 Ind./0.1m² = äusserst gering, 6 - 25 = sehr gering, 26 - 100 = gering, 101 - 500 = mittel, 501 - 2'500 = mittel bis gross, 2'501 - 5'000 = gross, > 5'000 = sehr gross. IND = auf ganze Zahlen aufgerundete Dichtewerte

Taxa aus Proben von seltenen Choriotopen gehen ohne Individuendichte in die Taxaliste ein.

ullet								
Taxaliste der Rohprobe 1 und Ergänzungen aus Probe 3 cf S IND QS Ne								Probe
Turbellaria [KI]	Turbellaria [KI] (Turbellaria, Strudelwurm)			15	1			1,3
Radix sp.	Lymnaeidae (Gastropoda, Schnecke)			1	5			3
Eiseniella tetraedra (SAVIGNY, 1826)	Lumbricidae (Oligochaeta, Wenigborster)			1	1			1
Oligochaeta [KI]	Oligochaeta [Kl] (Oligochaeta, Wenigborster)			1	1			1,3
Glossiphoniidae [Fam]	Glossiphoniidae (Hirudinea, Egel)			1	5			3
Hydracarina [Fam]	Hydracarina (Arachnida, Wassermilbe)			61	1			1,3
Asellidae [Fam] Gen. sp.	Asellidae (Isopoda, Assel)			1	5			3
Gammarus fossarum KOCH, 1835	Gammaridae (Amphipoda, Bachflohkrebs)			91	1			1,3
Gammarus pulex (LINNAEUS, 1758)	Gammaridae (Amphipoda, Bachflohkrebs)			1	1			1
Gammarus sp.	Gammaridae (Amphipoda, Bachflohkrebs)			614	1			1,3
Baetidae [Fam]	Baetidae (Ephemeroptera, Eintagsfliege)		L	61	1			1,3
Baetis rhodani PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	16	1			1,3
Caenis sp. STEPHENS, 1835	Caenidae (Ephemeroptera, Eintagsfliege)		L	1	5			3
Ephemerella sp. Walsh, 1862	Ephemerellidae (Ephemeroptera, Eintagsfliege		L	15	1			1,3
Ephemerellidae [Fam]	Ephemerellidae (Ephemeroptera, Eintagsfliege		L	16	1			1
Serratella ignita (PODA, 1761)	Ephemerellidae (Ephemeroptera, Eintagsfliege		L	1	1			1,3
Hydrovatus sp.	Dytiscidae (Coleoptera, Käfer)		ImW	1	5			3
Elmidae [Fam]	Elmidae (Coleoptera, Käfer)		L	3	1			1
Elmis sp.	Elmidae (Coleoptera, Käfer)		L	61	1			1,3
Limnius sp.	Elmidae (Coleoptera, Käfer)		L	46	1			1
Hydropsyche siltalai DÖHLER, 1963	Hydropsychidae (Trichoptera, Köcherfliege)		L	3	1			1,3
Hydropsyche sp.	Hydropsychidae (Trichoptera, Köcherfliege)		L	73	1			1
Halesus sp.	Limnephilidae (Trichoptera, Köcherfliege)		L	1	5			3
Limnephilidae [Fam]	Limnephilidae (Trichoptera, Köcherfliege)		L	1	5			3
Potamophylax latipennis (CURTIS, 1834)	Limnephilidae (Trichoptera, Köcherfliege)		L	1	1			1
Odontocerum albicorne (SCOPOLI, 1763)	Odontoceridae (Trichoptera, Köcherfliege)		L	1	1			1
Psychomyiidae [Fam] Gen. sp.	Psychomyiidae (Trichoptera, Köcherfliege)		L	122	1			1,3
Rhyacophila s.str. sp.	Rhyacophilidae (Trichoptera, Köcherfliege)		L	2	1			1,3

Rhyacophila sp.	Rhyacophilidae (Trichoptera, Köcherfliege)	L	1	1		1
Rhyacophilidae [Fam]	Rhyacophilidae (Trichoptera, Köcherfliege)	Р	1	1		1
Sericostoma flavicorne/personatum	Sericostomatidae (Trichoptera, Köcherfliege)	L	1	1		1
Sericostomatidae [Fam]	Sericostomatidae (Trichoptera, Köcherfliege)	L	15	1		1
Atherix ibis (FABRICIUS, 1798)	Athericidae (Diptera, Zweiflügler)	L	1	1		1
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)	L	850	1		1,3
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)	Р	30	1		1,3
Tanypodinae [UFam] Gen. sp.	Chironomidae (Diptera, Zuckmücken)	L	108	1		1,3
Tanytarsini [Tribus] Gen. sp.	Chironomidae (Diptera, Zuckmücken)	L	99	1		1,3
Antocha sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	15	1		1,3
Dicranota sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)	L	1	1		1
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)	L	1	1		1,3

cf: conferre, Bestimmung unklar. S: Stadium mit Ei = Ei, Gelege, Ex = Exuvie, ImL = Imago-Land, ImW = Imago-Wasser, juv = juvenil, K = Kokon, L = Larve, LL = Larve-Land, P = Puppe, Sim = Subimago. Zusatzangabe Geschlecht m = männlich, w = weiblich. Die Stadien Ex, ImL, LL und Sim werden bei den Indexberechnungen wie Taxazahl, Diversität, Gesamtindividuendichte, Makroindex, etc. nicht berücksichtigt. IND: Individuendichte pro 0.1m²., k.A. = keine Angabe möglich.

QS: Qualitätsstuffe des angegebenen Zählwertes mit 1 = Taxon gezählt (Surber), 2 = Taxon gezählt (Surber), 3 = Taxon mit HK geschätzt, 4 = Taxon mit AK geschätzt, 5 = ergänzendes Taxon ohne Dichteangabe (1 = Standard). I: Der Originalzählwert des Taxon wird für die gewählte Auswertungsmethode mit einem angenäherten Wert angegeben.

Neoz.: Neozoen, fremde Arten. RL: rote Liste Arten mit EX/RE = ausgestorben, CR = vom Aussterben bedroht, EN = stark gefährdet, VU = gefährdet bzw. verletzlich, NT = potentiell gefährdet, LC = nicht gefährdet, DD = ungenügende Datenlage.

Rheintaler Binnenkanal / OGB198 AquaPlus AG

Aufnahme Biologie Fliessgewässer

Fliessgewässer SG 2015 RBK Rietaach

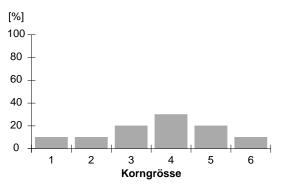
Gewässer	Rheintaler Binnenkanal	Gemeinde, Kanton	Au, SG		
Probenahmestelle	OGB199	Ortsbezeichnung	Monstein		
Koordinaten	766250 / 256550	Meereshöhe	400		
Datum	11.03.2015	Zeit	08.20 Uhr		
Witterung Probenahme	bewölkt	Witterung Vortage	sonnig		
BearbeiterIn Feld	AquaPlus AG - Hürlimann-Ragaz Joachim				

Hydro	logische	Angaben
		3

Gewässertyp	Kanal
mittleres Gefälle [%]	0.1
natürlicher Abflussregimetyp	pluvial supérieur
Wasserführung	ständig
Grösse Einzugsgebiet [km²]	170.4
Art Einzugsgebiet [%]	Wiese/Weide 37%, Siedlungsgebiet 35%, Wald 25%, Gebirge 3%
Nutzung	Vorfluter ARA

Kolmation

Nomination
Skala BAFU Modul Äusserer Aspekt:
keine, mittel/leicht, stark
Skala AquaPlus: keine oder nur sehr
geringe, deutlich spürbare, starke, sehr
starke


leicht/mittel (anthropogen)

Foto

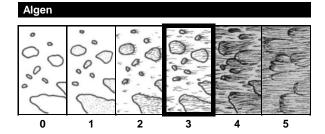
Blick aufwärts.

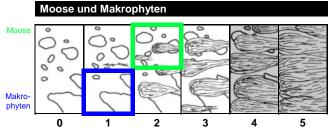
Korngrössenverteilung

Korngrössen: 1 = anstehender Fels und grösseres Gerölle; 2 = kopfgrosses Gerölle; 3 = Grobkies (faust- bis nussgross); 4 = Feinkies (nuss- bis erbsengross); 5 = Sand; 6 = Feinsand und Silt.

Uferbeschaffenheit

	links	rechts
Beurteilung Uferbereich	gewässerfremd	gewässerfremd
Ufertyp/Vegetation	Fettwiese	Fettwiese
Durchflossene Landschaft, näh. Einzugsgebiet (Anteil)	Siedlungsgebiet (gross)	Siedlungsgebiet (mittel)
	Industrie/Gewerbe (mittel)	Industrie/Gewerbe (mittel)
	Strasse (mittel)	Strasse (mittel)
	Schiene/Trasse (klein)	
Verbauung Böschungsfuss	durchlässig, verbaut	durchlässig, verbaut
Verbauungstyp Böschungsfuss	Natursteine locker	Natursteine locker


vorhandene Choriotope

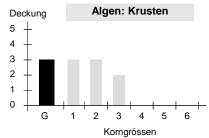

Choriotop (sortiert nach Häufigkeit)	Häufigkeit
Mesolithal (Grobschotter, 6.3-20 cm)	häufig (11-50%)
Mikrolithal (Grobkies, 2-6.3 cm)	häufig (11-50%)
Makrolithal (grosse Steine, 20-40 cm)	mittel (5-10%)
Akal (Fein- / Mittelkies, 0.2-2 cm)	wenig (<5%)
Phytal (amphibisch)	wenig (<5%)
Megalithal (Fels, Steinblöcke > 40 cm)	wenig (<5%)
Psammal (Sand, 0.006 -0.2 cm)	wenig (<5%)

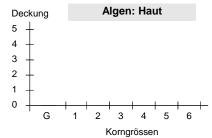
Äusserer Aspekt

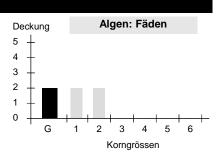
anthropogene Trübung	keine	geringe	MITTLERE	starke	
anthropogene Verfärbung	keine	leichte	MITTLERE	starke	
Geruch	KEIN	gering	mittel	stark	
anthropogener Schaum (stabil)	kein	WENIG	mittel	viel	
anthropogene Verschlammung	ke <u>ine</u>	LEICHTE	mittlere	starke	
anthropogene makroskopisch sichtbare Pilze / Bakterien / Protozoen	keine VER- EINZELT	we	wenig		
anthropogene Eisensulfid-Flecken (Häufigkeit)	0%	1-10%	10-25%	>25%	
Feststoffe aus Siedlungsentwässerung	KEINE	wenige	mittel	viel	
Abfälle	keine	WENIGE	mittel	viele	

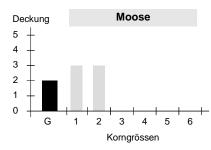
Pflanzlicher Bewuchs

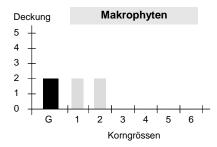
- 0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Zotten,
- 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen,
- 5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar. Abgeändert nach: THOMAS & SCHANZ (1976)

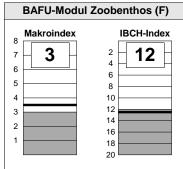

0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. Abgeändert nach: THOMAS & SCHANZ

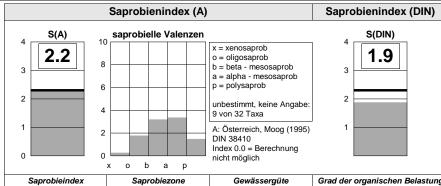

Artenliste (dominante Formen)


Αlç	gen	Sub				Dec	kun	g		Max. L	Moose / Makrophyten	Sub			Г)eck	kung)		Max. L
			Ges		K	orng	röss	sen		bzw.			Ges		Ko	rngr	röss	en		bzw.
W				1	2	3	4	5	6	Häuf.				1	2	3	4	5	6	Häuf.
K	Cyanophyceae (Blaualge)	S	1	1	1	0	0	0	0		Fontinalis antipyretica (Moos)	S	2	3	3	0	0	0	0	
K	Bacillariophyceae (Kieselalgen)	S	3	3	3	2	0	0	0		Gramineae (Süssgräser, Echte Gräser)	S	2	2	2	0	0	0	0	
F	Vaucheria sp. (Gelbgrünalge)	S	2	2	2	0	0	0	0	>10	Potamogeton pectinatus (Kamm Laichkraut	S	1	1	1	0	0	0	0	
F	Cladophora glomerata (Grünalge)	S	1	1	1	0	0	0	0	>10										


Tabellenwerte in Deckungs-Kategorien: 0 = frei von Bewuchs; 1 = 1-10% bedeckt; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Ges = Gesamtdeckung der Gewässersohle durch die betreffende Art. Korngrössen 1-6: Legende siehe unter "Korngrössenverteilung". W = Wuchsform: K = Kruste; H = Haut; F = Fäden (inkl. Kolonien oder Bänder von Diatomeen und Schläuche von z.B. Hydrurus foetidus); E = Epiphyten; Sub = Substrat; S = Stein; H = Holz; SI = Schlamm; A = Algen; M = Moose und Makrophyten. Max. L = Maximale Fadenlänge [cm]; Häuf. = Häufigkeit der Epiphyten: o = vereinzelt; oo = wenige; ooo = häufig; oooo = massenhaft.


Pflanzlicher Bewuchs auf den einzelnen Korngrössen





Deckung 0 = frei von Bewuchs, 1 = 1-10% bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. G = Gesamtdeckung der Gewässersohle (alle Korngrössen). Korngrössen: 1-6 = Legende siehe unter "Korngrössenverteilung".

Makroindex	Ökol. Zustand	IBCH-Index
1 - 2	sehr gut	17 - 20
3	gut	13 - 16
4	mässig	9 - 12
5-6	unbefriedigend	5 - 8
7-8	schlecht	0 - 4

Saprobieindex	Saprobiezone	Gewässergüte	Grad der organischen Belastung
1.0 <= S < 1.5	oligosaprob	I	unbelastet bis sehr gering belastet
1.5 <= S < 1.8	oligo-beta-mesosaprob	1 - 11	gering belastet
1.8 <= S < 2.3	beta-mesosaprob	=	mässig belastet
2.3 <= S < 2.7	beta-alpha-mesosaprob	-	kritisch belastet
2.7 <= S < 3.2	alpha-mesosaprob	III	stark verschmutzt
3.2 <= S < 3.5	alpha-meso-polysaprob	III - IV	sehr stark verschmutzt
3.5 <= S < 4.0	polysaprob	IV	übermässig verschmutzt

Beprobte Choriotope	Fliessges. m/s	Häufigkeit	Anzahl Surber-P	Anzahl Kick-P	Abgelesen X	Rohprobe
Mesolithal (Grobschotter, 6.3-20 cm)	0.75 - 0.25	häufig (11-50%)	1	0	0	1
Makrolithal (grosse Steine, 20-40 cm)	1.5 - 0.75	mittel (5-10%)	1	0	0	1
Makrolithal (grosse Steine, 20-40 cm)	0.75 - 0.25	mittel (5-10%)	1	0	0	1
Makrolithal (grosse Steine, 20-40 cm)	0.25 - 0.05	mittel (5-10%)	0	1	0	3
Makrolithal (grosse Steine, 20-40 cm)	< 0.05	mittel (5-10%)	0	1	0	3
Phytal (amphibisch)	0.25 - 0.05	wenig (<5%)	0	1	0	3
Phytal (amphibisch)	< 0.05	wenig (<5%)	0	1	0	3
Psammal (Sand, 0.006 -0.2 cm)	0.25 - 0.05	wenig (<5%)	0	1	0	3

Taxazahl	32	Gesamt- häufigkeit [Ind./0.1m ²]	730	←	Individuendichte, IND	< 5 Ind./0.1m² = äusserst gering, 6 - 25 = sehr gering, 26 - 100 = gering, 101 - 500 = mittel, 501 - 2'500 = mittel bis gross, 2'501 - 5'000 = gross, > 5'000 = sehr gross. IND = auf ganze Zahlen aufgerundete Dichtewerte
Diversität	3.19	Nassgew. [g/0.1m ²]	1.9			Taxa aus Proben von seltenen Choriotopen gehen ohne Individuendichte in die Taxaliste ein.

				$oldsymbol{\Psi}$				
Taxaliste der Rohprobe 1 und Ergä	inzungen aus Probe 3	cf	S	IND	QS	Neoz.	RL	Probe
Pisidium sp.	Sphaeriidae (Bivalvia, Muschel)			4	1			1,3
Oligochaeta [KI]	Oligochaeta [KI] (Oligochaeta, Wenigborster)			79	1			1,3
Glossiphonia sp.	Glossiphoniidae (Hirudinea, Egel)			1	5			3
Hirudinea [KI]	Hirudinea [KI] (Hirudinea, Egel)			1	1			1
Hydracarina [Fam]	Hydracarina (Arachnida, Wassermilbe)			26	1			1,3
Gammarus fossarum KOCH, 1835	Gammaridae (Amphipoda, Bachflohkrebs)			4	1			1,3
Gammarus roeselii GERVAIS, 1835	Gammaridae (Amphipoda, Bachflohkrebs)			39	1	Х		1,3
Gammarus sp.	Gammaridae (Amphipoda, Bachflohkrebs)			23	1			1,3
Baetidae [Fam]	Baetidae (Ephemeroptera, Eintagsfliege)		L	7	1			1
Baetis rhodani PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	7	1			1,3
Leuctridae [Fam] Gen. sp.	Leuctridae (Plecoptera, Steinfliege)		L	7	1			1
Elmidae [Fam]	Elmidae (Coleoptera, Käfer)		L	7	1			1
Elmis sp.	Elmidae (Coleoptera, Käfer)		L	22	1			1
Limnius sp.	Elmidae (Coleoptera, Käfer)		ImW	1	1			1
Limnius sp.	Elmidae (Coleoptera, Käfer)		L	4	1			1,3
Riolus sp.	Elmidae (Coleoptera, Käfer)		L	4	1			1
Hydropsyche instabilis (CURTIS, 1834)	Hydropsychidae (Trichoptera, Köcherfliege)		L	1	5			3
Hydropsyche sp.	Hydropsychidae (Trichoptera, Köcherfliege)		L	7	1			1,3
Hydropsyche tenuis NAVAS, 1932	Hydropsychidae (Trichoptera, Köcherfliege)		L	1	1			1
Limnephilidae [Fam]	Limnephilidae (Trichoptera, Köcherfliege)		L	1	5			3
Limnephilinae [UFam]	Limnephilidae (Trichoptera, Köcherfliege)		L	1	5			3
Psychomyiidae [Fam] Gen. sp.	Psychomyiidae (Trichoptera, Köcherfliege)		L	7	1			1
Rhyacophila s.str. sp.	Rhyacophilidae (Trichoptera, Köcherfliege)		L	1	1			1
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)		L	271	1			1,3
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)		Р	19	1			1,3
Chironomini [Tribus]	Chironomidae (Diptera, Zuckmücken)		L	37	1			1
Tanypodinae [UFam] Gen. sp.	Chironomidae (Diptera, Zuckmücken)		L	44	1			1,3

Tanytarsini [Tribus] Gen. sp.	anytarsini [Tribus] Gen. sp. Chironomidae (Diptera, Zuckmücken)		L	89	1		1
Chelifera sp.	Empididae (Diptera, Zweiflügler)		L	1	1		1
Antocha sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)		L	11	1		1
Dicranota sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)		L	1	5		3
Simulium (Wilhelmia) sp. Simuliidae (Diptera, Kriebelmücke)			L	4	1		1
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)		L	4	1		1,3
Tabanidae [Fam] Gen. sp. Tabanidae (Diptera, Zweiflügler)			L	1	1		1

cf: conferre, Bestimmung unklar. S: Stadium mit Ei = Ei, Gelege, Ex = Exuvie, ImL = Imago-Land, ImW = Imago-Wasser, juv = juvenil, K = Kokon, L = Larve, LL = Larve-Land, P = Puppe, Sim = Subimago. Zusatzangabe Geschlecht m = männlich, w = weiblich. Die Stadien Ex, ImL, LL und Sim werden bei den Indexberechnungen wie Taxazahl, Diversität, Gesamtindividuendichte, Makroindex, etc. nicht berücksichtigt. IND: Individuendichte pro 0.1m²., k.A. = keine Angabe möglich.

QS: Qualitätsstufe des angegebenen Zählwertes mit 1 = Taxon gezählt (Surber), 2 = Taxon gezählt (Kick), 3 = Taxon mit HK geschätzt, 4 = Taxon mit AK geschätzt, 5 = ergänzendes Taxon ohne Dichteangabe (1 = Standard). !: Der Originalzählwert des Taxon wird für die gewählte Auswertungsmethode mit einem angenäherten Wert

Rheintaler Binnenkanal / OGB199 AquaPlus AG

Neoz.: Neozoen, fremde Arten. RL: rote Liste Arten mit EX/RE = ausgestorben, CR = vom Aussterben bedroht, EN = stark gefährdet, VU = gefährdet bzw. verletzlich, NT = potentiell gefährdet, LC = nicht gefährdet, DD = ungenügende Datenlage.

Aufnahme Biologie Fliessgewässer

Fliessgewässer SG 2015 RBK Rietaach

Gewässer
Probenahmestelle
Koordinaten
Datum
Witterung Probenahme
BearbeiterIn Feld

Rietaach	Gemein
OGB200	Ortsbez
760300 / 248220	Meeres
13.03.2015	Zeit
sonnig	Witteru
AquaPlus AG - Hürlimann-Rag	az Joachim

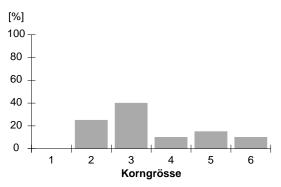
Gemeinde, Kanton Ortsbezeichnung Meereshöhe Zeit Witterung Vortage

Foto

Altstätten, SG
Banriet
418
08.30 Uhr
sonnig

Hydrologische Angaben

Gewässertyp	Bach
mittleres Gefälle [%]	0.3
natürlicher Abflussregimetyp	nivo-pluvial préalpin
Wasserführung	ständig
Grösse Einzugsgebiet [km²]	21
Art Einzugsgebiet [%]	Wald 50%, Landwirtschaft 45%, Siedlungsgebiet 5%
Nutzung	keine


Kolmation

Kolmation
Skala BAFU Modul Äusserer Aspekt: keine, mittel/leicht, stark Skala AquaPlus: keine oder nur sehr geringe, deutlich spürbare, starke, sehr starke

leicht/mittel (anthropogen)

Blick aufwärts.

Korngrössenverteilung

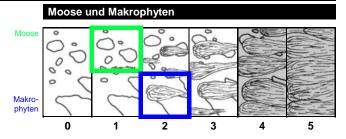
Korngrössen: 1 = anstehender Fels und grösseres Gerölle; 2 = kopfgrosses Gerölle; 3 = Grobkies (faust- bis nussgross); 4 = Feinkies (nuss- bis erbsengross); 5 = Sand; 6 = Feinsand und Silt.

Uferbeschaffenheit

	links	rechts
Beurteilung Uferbereich	gewässerfremd	gewässerfremd
Ufertyp/Vegetation		Bäume/Sträucher standortfremd
	Fettwiese	Fettwiese
Durchflossene Landschaft, näh. Einzugsgebiet (Anteil)	Landwirtschaft (mittel)	Landwirtschaft (gross)
	Siedlungsgebiet (klein)	
	Industrie/Gewerbe (klein)	
Verbauung Böschungsfuss	durchlässig, verbaut	durchlässig, verbaut
Verbauungstyp Böschungsfuss	Natursteine dicht	Natursteine dicht

vorhandene Choriotope

Choriotop (sortiert nach Häufigkeit)	Häufigkeit
Akal (Fein- / Mittelkies, 0.2-2 cm)	häufig (11-50%)
Mesolithal (Grobschotter, 6.3-20 cm)	häufig (11-50%)
Mikrolithal (Grobkies, 2-6.3 cm)	häufig (11-50%)
Phytal (submers)	häufig (11-50%)
Makrolithal (grosse Steine, 20-40 cm)	häufig (11-50%)
Psammal (Sand, 0.006 -0.2 cm)	mittel (5-10%)
Moospolster	wenig (<5%)


Äusserer Aspekt anthropogene Trübung mittlere **GERINGE** starke keine anthropogene Verfärbung keine LEICHTE mittlere starke anthropogener Geruch kein **GERING** mittel stark anthropogener Schaum (stabil) kein WENIG mittel viel LEICHTE anthropogene Verschlammung mittlere keine starke anthropogene makroskopisch sichtbare Pilze / keine mittel wenig Bakterien / Protozoen EINZEL' anthropogene Eisensulfid-Flecken (Häufigkeit) 1-10% 10-25% >25% Feststoffe aus Siedlungsentwässerung KEINE mittel viel wenige

KEINE

Pflanzlicher Bewuchs

Abfälle

Algen 00 0 00 0 2 5

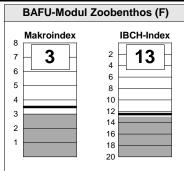
mittel

wenige

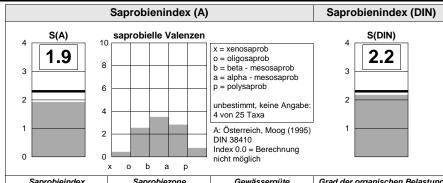
viele

- 0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Zotten,
- 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen,
- 5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar. Abgeändert nach: THOMAS & SCHANZ (1976)

0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%3 = 26-50%, 4 = 51-75%, 5 = 76-100%. Abgeändert nach: THOMAS & SCHANZ


Artenliste (dominante Formen)

Ale	gen	Sub				Dec	kun	g		Max. L	Moose / Makrophyten	Sub			[Deck	kung	ı	Max. L
			Ges		Ko	orng	röss	sen		bzw.	. ,		Ges		Ko	rngr	öss	en	bzw.
W				1	2	3	4	5	6	Häuf.				1	2	3	4	5 6	Häuf.
K	Cyanophyceae (Blaualge)	S	1	0	1	1	0	0	0		Fontinalis antipyretica (Moos)	S	1	0	1	1	0	0 0	
K	Bacillariophyceae (Kieselalgen)	S	2	0	2	2	0	0	0		Myriophyllum spicatum (Tausendblatt)	S	2	0	0	0	0	0 2	
F	Vaucheria sp. (Gelbgrünalge)	S	3	0	3	3	2	0	0	<=10									
F	Cladophora sp. (Grünalge)	S	1	0	1	1	0	0	0	>10									


Tabellenwerte in Deckungs-Kategorien: 0 = frei von Bewuchs; 1 = 1-10% bedeckt; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Ges = Gesamtdeckung der Gewässersohle durch die betreffende Art. Korngrössen 1-6: Legende siehe unter "Korngrössenverteilung". W = Wuchsform: K = Kruste; H = Haut; F = Fäden (inkl. Kolonien oder Bänder von Diatomeen und Schläuche von z.B. Hydrurus foetidus); E = Epiphyten; Sub = Substrat; S = Stein; H = Holz; SI = Schlamm; A = Algen; M = Moose und Makrophyten. Max. L = Maximale Fadenlänge [cm]; Häuf. = Häufigkeit der Epiphyten: o = vereinzelt; oo = wenige; ooo = häufig; oooo = massenhaft.

Pflanzlicher Bewuchs auf den einzelnen Korngrössen Algen: Fäden Algen: Krusten Algen: Haut Deckung Deckung Deckung 5 5 5 4 4 4 3 3 3 2 2 2 1 1 0 G 2 5 6 G 2 3 4 5 6 G 1 3 1 1 5 Korngrössen Korngrössen Korngrössen Moose Makrophyten Deckung Deckung 5 5 4 4 Deckung 0 = frei von Bewuchs, 1 = 1-10% bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. G = Gesamtdeckung der 3 3 Gewässersohle (alle Korngrössen). Korngrössen: 1-6 = Legende siehe unter 2 2 1 1 "Korngrössenverteilung". 0 2 G 3 5 G Korngrössen Korngrössen

AquaPlus AG Rietaach / OGB200

Makroindex	Ökol. Zustand	IBCH-Index
1 - 2	sehr gut	17 - 20
3	gut	13 - 16
4	mässig	9 - 12
5-6	unbefriedigend	5 - 8
7-8	schlecht	0 - 4

Saprobleindex	Saproblezone	Gewassergute	Grad der organischen Belastung
1.0 <= S < 1.5	oligosaprob	I	unbelastet bis sehr gering belastet
1.5 <= S < 1.8	oligo-beta-mesosaprob	1 - II	gering belastet
1.8 <= S < 2.3	beta-mesosaprob	II	mässig belastet
2.3 <= S < 2.7	beta-alpha-mesosaprob	II - III	kritisch belastet
2.7 <= S < 3.2	alpha-mesosaprob	III	stark verschmutzt
3.2 <= S < 3.5	alpha-meso-polysaprob	III - IV	sehr stark verschmutzt
3.5 <= S < 4.0	polysaprob	IV	übermässig verschmutzt

Beprobte Choriotope	Fliessges. m/s	Häufigkeit	Anzahl Surber-P	Anzahl Kick-P	Abgelesen X	Rohprobe
Akal (Fein- / Mittelkies, 0.2-2 cm)	0.25 - 0.05	häufig (11-50%)	0	1	0	3
Makrolithal (grosse Steine, 20-40 cm)	0.75 - 0.25	häufig (11-50%)	1	0	0	1
Makrolithal (grosse Steine, 20-40 cm)	0.25 - 0.05	häufig (11-50%)	1	0	0	1
Mesolithal (Grobschotter, 6.3-20 cm)	0.75 - 0.25	häufig (11-50%)	1	0	0	1
Mikrolithal (Grobkies, 2-6.3 cm)	0.25 - 0.05	häufig (11-50%)	0	1	0	3
Phytal (submers)	0.75 - 0.25	häufig (11-50%)	0	1	0	3
Psammal (Sand, 0.006 -0.2 cm)	< 0.05	mittel (5-10%)	0	1	0	3
Moospolster	0.75 - 0.25	wenig (<5%)	0	1	0	3

Taxazahl	25	Gesamt- häufigkeit [Ind./0.1m ²]	929	←	Individuendichte, IND	< 5 Ind./0.1m² = äusserst gering, 6 - 25 = sehr gering, 26 - 100 = gering, 101 - 500 = mittel, 501 - 2'500 = mittel bis gross, 2'501 - 5'000 = gross, > 5'000 = sehr gross. IND = auf ganze Zahlen aufgerundete Dichtewerte
Diversität	3.17	Nassgew. [g/0.1m ²]	0.04			Taxa aus Proben von seltenen Choriotopen gehen ohne Individuendichte in die Taxaliste ein.

				v				
Taxaliste der Rohprobe 1 und Ergänz	rungen aus Probe 3	cf	S	IND	QS	Neoz.	RL	Probe
Radix balthica (LINNAEUS, 1758)	Lymnaeidae (Gastropoda, Schnecke)			1	5			3
Eiseniella tetraedra (SAVIGNY, 1826)	Lumbricidae (Oligochaeta, Wenigborster)			1	1			1
Oligochaeta [KI]	Oligochaeta [KI] (Oligochaeta, Wenigborster)			22	1			1,3
Hirudinea [KI]	Hirudinea [KI] (Hirudinea, Egel)			1	1			1
Hydracarina [Fam]	Hydracarina (Arachnida, Wassermilbe)			111	1			1
Gammarus fossarum KOCH, 1835	Gammaridae (Amphipoda, Bachflohkrebs)			1	5			3
Baetidae [Fam]	Baetidae (Ephemeroptera, Eintagsfliege)		L	163	1			1,3
Baetis rhodani PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	1	1			1,3
Baetis sp. LEACH, 1815	Baetidae (Ephemeroptera, Eintagsfliege)		L	59	1			1
Caenis horaria (LINNAEUS, 1758)	Caenidae (Ephemeroptera, Eintagsfliege)	Χ	L	1	1			1,3
Caenis sp. STEPHENS, 1835	Caenidae (Ephemeroptera, Eintagsfliege)		L	141	1			1,3
Habroleptoides confusa SARTORI & JACOB,	Leptophlebiidae (Ephemeroptera, Eintagsfliege		L	1	5			3
Leuctra sp.	Leuctridae (Plecoptera, Steinfliege)		L	7	1			1
Brachyptera risi (MORTON, 1896)	Taeniopterygidae (Plecoptera, Steinfliege)		L	1	5			3
Elmidae [Fam]	Elmidae (Coleoptera, Käfer)		L	7	1			1
Elmis sp.	Elmidae (Coleoptera, Käfer)		L	31	1			1,3
Limnius sp.	Elmidae (Coleoptera, Käfer)		L	8	1			1,3
Riolus sp.	Elmidae (Coleoptera, Käfer)		L	7	1			1
Orectochilus sp.	Gyrinidae (Coleoptera, Käfer)		L	1	1			1
Mystacides azurea (LINNAEUS, 1761)	Leptoceridae (Trichoptera, Köcherfliege)		L	1	5			3
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)		Р	185	1			1,3
Chironomini [Tribus]	Chironomidae (Diptera, Zuckmücken)		L	1	5			3
Tanypodinae [UFam] Gen. sp.	Chironomidae (Diptera, Zuckmücken)		L	67	1			1,3
Tanytarsini [Tribus] Gen. sp.	Chironomidae (Diptera, Zuckmücken)		L	111	1			1,3
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)		L	7	1			1,3

AquaPlus AG Rietaach / OGB200

cf: conferre, Bestimmung unklar. S: Stadium mit Ei = Ei, Gelege, Ex = Exuvie, ImL = Imago-Land, ImW = Imago-Wasser, juv = juvenil, K = Kokon, L = Larve, LL = Larve-Land, P = Puppe, Sim = Subimago. Zusatzangabe Geschlecht m = männlich, w = weiblich. Die Stadien Ex, ImL, LL und Sim werden bei den Indexberechnungen wie Taxazahl, Diversität, Gesamtindividuendichte, Makroindex, etc. nicht berücksichtigt. IND: Individuendichte pro 0.1m²., k.A. = keine Angabe möglich.

QS: Qualitätsstufe des angegebenen Zählwertes mit 1 = Taxon gezählt (Surber), 2 = Taxon gezählt (Kick), 3 = Taxon mit HK geschätzt, 4 = Taxon mit AK geschätzt, 5 = ergänzendes Taxon ohne Dichteangabe (1 = Standard). !: Der Originalzählwert des Taxon wird für die gewählte Auswertungsmethode mit einem angenäherten Wert

angegeben.

Neoz.: Neozoen, fremde Arten. RL: rote Liste Arten mit EX/RE = ausgestorben, CR = vom Aussterben bedroht, EN = stark gefährdet, VU = gefährdet bzw. verletzlich, NT = potentiell gefährdet, LC = nicht gefährdet, DD = ungenügende Datenlage.

Rietaach / OGB200 AquaPlus AG

Aufnahme Biologie Fliessgewässer

Fliessgewässer SG 2015 RBK Rietaach

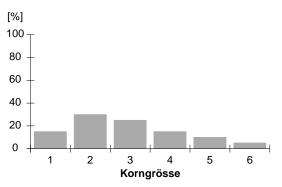
Gewässer	Rietaach	Gemeinde, Kanton	Altstätten, SG		
Probenahmestelle	OGB237	Ortsbezeichnung	Banriet - unterhalb ARA		
Koordinaten	760727 / 248594	Meereshöhe	415		
Datum	13.03.2015	Zeit	10.10 Uhr		
Witterung Probenahme	sonnig	Witterung Vortage	sonnig		
BearbeiterIn Feld	AquaPlus AG - Hürlimann-Ragaz Joachim				

Hydro	logische	Angaben
-------	----------	---------

Gewässertyp	Bach
mittleres Gefälle [%]	0.3
natürlicher Abflussregimetyp	nivo-pluvial préalpin
Wasserführung	ständig
Grösse Einzugsgebiet [km²]	30
Art Einzugsgebiet [%]	Landwirtschaft 50%, Wald 40%, Siedlungsgebiet 10%
Nutzung	Vorfluter ARA

Kolmation

Kolillation
Skala BAFU Modul Äusserer Aspekt:
keine, mittel/leicht, stark
Skala AquaPlus: keine oder nur sehr
geringe, deutlich spürbare, starke, sehr
starke


stark (anthropogen)

Foto

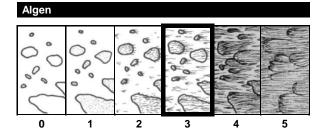
Blick aufwärts.

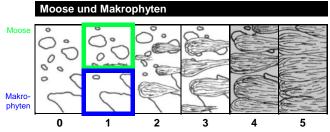
Korngrössenverteilung

Korngrössen: 1 = anstehender Fels und grösseres Gerölle; 2 = kopfgrosses Gerölle; 3 = Grobkies (faust- bis nussgross); 4 = Feinkies (nuss- bis erbsengross); 5 = Sand; 6 = Feinsand und Silt.

Uferbeschaffenheit

	links	rechts
Beurteilung Uferbereich	gewässerfremd	gewässerfremd
Ufertyp/Vegetation		Bäume/Sträucher standortfremd
	Fettwiese	Fettwiese
Durchflossene Landschaft, näh. Einzugsgebiet (Anteil)	Landwirtschaft (mittel)	Landwirtschaft (mittel)
	Siedlungsgebiet (mittel)	Siedlungsgebiet (mittel)
	Industrie/Gewerbe (klein)	
Verbauung Böschungsfuss	durchlässig, verbaut	durchlässig, verbaut
Verbauungstyp Böschungsfuss	Natursteine dicht	Natursteine dicht


vorhandene Choriotope

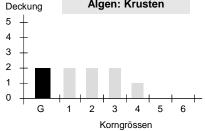

Choriotop (sortiert nach Häufigkeit)	Häufigkeit
Mesolithal (Grobschotter, 6.3-20 cm)	häufig (11-50%)
Mikrolithal (Grobkies, 2-6.3 cm)	häufig (11-50%)
Makrolithal (grosse Steine, 20-40 cm)	häufig (11-50%)
Phytal (submers)	mittel (5-10%)
Akal (Fein- / Mittelkies, 0.2-2 cm)	wenig (<5%)

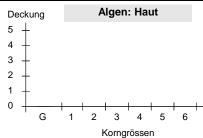
Äusserer Aspekt

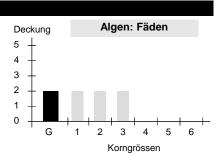
anthropogene Trübung	ke	ine	geringe	MITTLERE	sta	rke
anthropogene Verfärbung	ke	ine	leichte	MITTLERE	sta	rke
Geruch	K	EIN	gering	mittel	sta	ark
unbekannter Schaum (stabil)	ke	ein	WENIG	mittel	vi	el
anthropogene Verschlammung	ke	ine	leichte	MITTLERE	sta	rke
anthropogene makroskopisch sichtbare Pilze / Bakterien / Protozoen	keine	ver- einzelt	WE	NIG	mittel	viel
anthropogene Eisensulfid-Flecken (Häufigkeit)	0% 1-10%		1-10%	10-25%	>2	5%
Feststoffe aus Siedlungsentwässerung	KE	INE	wenige	mittel	vi	el
Abfälle	KEINE		wenige	mittel	vie	No.

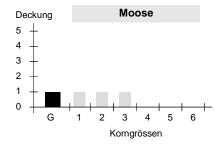
Pflanzlicher Bewuchs

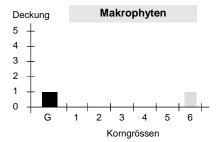
- 0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Zotten,
- 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen,
- 5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar. Abgeändert nach: THOMAS & SCHANZ (1976)

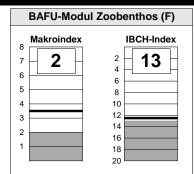

0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. Abgeändert nach: THOMAS & SCHANZ

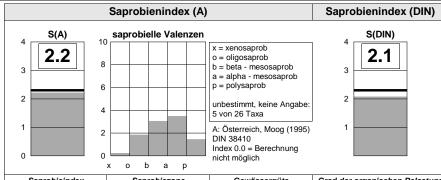

Artenliste (dominante Formen)


Alg	Algen Sub Deckung Max. L Moose / Makrophyten		Sub			С	Deck	kunç	g		Max. L									
			Ges		Ko	orng	röss	sen		bzw.			Ges		Ko	rngı	röss	en		bzw.
W				1	2	3	4	5	6	Häuf.				1	2	3	4	5	6	Häuf.
K	Cyanophyceae (Blaualge)	S	1	1	1	1	0	0	0		Fontinalis antipyretica (Moos)	S	1	1	1	1	0	0	0	<=10
K	Bacillariophyceae (Kieselalgen)	S	2	2	2	2	1	0	0		Myriophyllum spicatum (Tausendblatt)	S	1	0	0	0	0	0	1	
F	Vaucheria sp. (Gelbgrünalge)	S	2	2	2	2	0	0	0											
F	Cladophora sp. (Grünalge)	S	1	1	1	1	0	0	0											


Tabellenwerte in Deckungs-Kategorien: 0 = frei von Bewuchs; 1 = 1-10% bedeckt; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Ges = Gesamtdeckung der Gewässersohle durch die betreffende Art. Korngrössen 1-6: Legende siehe unter "Korngrössenverteilung". W = Wuchsform: K = Kruste; H = Haut; F = Fäden (inkl. Kolonien oder Bänder von Diatomeen und Schläuche von z.B. Hydrurus foetidus); E = Epiphyten; Sub = Substrat; S = Stein; H = Holz; SI = Schlamm; A = Algen; M = Moose und Makrophyten. Max. L = Maximale Fadenlänge [cm]; Häuf. = Häufigkeit der Epiphyten: o = vereinzelt; oo = wenige; ooo = häufig; oooo = massenhaft.


Pflanzlicher Bewuchs auf den einzelnen Korngrössen Algen: Krusten





Deckung 0 = frei von Bewuchs, 1 = 1-10% bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. G = Gesamtdeckung der Gewässersohle (alle Korngrössen). Korngrössen: 1-6 = Legende siehe unter "Korngrössenverteilung".

AquaPlus AG Rietaach / OGB237

Makroindex	Ökol. Zustand	IBCH-Index
1 - 2	sehr gut	17 - 20
3	gut	13 - 16
4	mässig	9 - 12
5-6	unbefriedigend	5 - 8
7-8	schlecht	0 - 4

Saprobieindex	Saprobiezone	Gewässergüte	Grad der organischen Belastung
1.0 <= S < 1.5	oligosaprob	1	unbelastet bis sehr gering belastet
1.5 <= S < 1.8	oligo-beta-mesosaprob	I - II	gering belastet
1.8 <= S < 2.3	beta-mesosaprob	II	mässig belastet
2.3 <= S < 2.7	beta-alpha-mesosaprob	II - III	kritisch belastet
2.7 <= S < 3.2	alpha-mesosaprob	III	stark verschmutzt
3.2 <= S < 3.5	alpha-meso-polysaprob	III - IV	sehr stark verschmutzt
3.5 <= S < 4.0	polysaprob	IV	übermässig verschmutzt

Beprobte Choriotope	Fliessges. m/s	Häufigkeit	Anzahl Surber-P	Anzahl Kick-P	Abgelesen X	Rohprobe
Makrolithal (grosse Steine, 20-40 cm)	0.75 - 0.25	häufig (11-50%)	0	1	0	3
Makrolithal (grosse Steine, 20-40 cm)	0.75 - 0.25	häufig (11-50%)	1	0	0	1
Mesolithal (Grobschotter, 6.3-20 cm)	0.75 - 0.25	häufig (11-50%)	1	0	0	1
Mesolithal (Grobschotter, 6.3-20 cm)	0.25 - 0.05	häufig (11-50%)	0	1	0	3
Mikrolithal (Grobkies, 2-6.3 cm)	0.75 - 0.25	häufig (11-50%)	0	1	0	3
Phytal (submers)	0.75 - 0.25	mittel (5-10%)	0	1	0	3
Akal (Fein- / Mittelkies, 0.2-2 cm)	0.75 - 0.25	wenig (<5%)	0	1	0	3
	0.75 - 0.25		1	0	0	1

Taxazahl	26	Gesamt- häufigkeit [Ind./0.1m ²]	466	←	Individuendichte, IND	< 5 Ind./0.1m² = äusserst gering, 6 - 25 = sehr gering, 26 - 100 = gering, 101 - 500 = mittel, 501 - 2'500 = mittel bis gross 2'501 - 5'000 = gross, > 5'000 = sehr gross. IND = auf ganze Zahlen aufgerundete Dichtewerte
Diversität	2.89	Nassgew. [g/0.1m ²]	0.17			Taxa aus Proben von seltenen Choriotopen gehen ohne Individuendichte in die Taxaliste ein.
						L

				lacksquare				
Taxaliste der Rohprobe 1 und Er	gänzungen aus Probe 3	cf	S	IND	QS	Neoz.	RL	Probe
Oligochaeta [KI]	Oligochaeta [KI] (Oligochaeta, Wenigborster)			15	1			1,3
Glossiphonia sp.	Glossiphoniidae (Hirudinea, Egel)			1	5			3
Hydracarina [Fam]	Hydracarina (Arachnida, Wassermilbe)			22	1			1,3
Gammarus fossarum KOCH, 1835	Gammaridae (Amphipoda, Bachflohkrebs)			1	5			3
Gammarus sp.	Gammaridae (Amphipoda, Bachflohkrebs)			1	5			3
Baetidae [Fam]	Baetidae (Ephemeroptera, Eintagsfliege)		L	26	1			1,3
Baetis alpinus PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	1	5			3
Baetis rhodani PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	9	1			1,3
Caenis sp. STEPHENS, 1835	Caenidae (Ephemeroptera, Eintagsfliege)		L	26	1			1,3
Leuctra sp.	Leuctridae (Plecoptera, Steinfliege)		L	1	5			3
Leuctridae [Fam] Gen. sp.	Leuctridae (Plecoptera, Steinfliege)		L	4	1			1
Brachyptera risi (MORTON, 1896)	Taeniopterygidae (Plecoptera, Steinfliege)		L	1	5			3
Brachyptera sp.	Taeniopterygidae (Plecoptera, Steinfliege)		L	1	5			3
Elmis sp.	Elmidae (Coleoptera, Käfer)		L	1	5			3
Riolus sp.	Elmidae (Coleoptera, Käfer)		L	7	1			1
Hydropsyche sp.	Hydropsychidae (Trichoptera, Köcherfliege)		L	1	1			1,3
Limnephilidae [Fam]	Limnephilidae (Trichoptera, Köcherfliege)		L	4	1			1
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)		L	150	1			1,3
Chironomini [Tribus]	Chironomidae (Diptera, Zuckmücken)		L	37	1			1,3
Tanypodinae [UFam] Gen. sp.	Chironomidae (Diptera, Zuckmücken)		L	49	1			1,3
Tanytarsini [Tribus] Gen. sp.	Chironomidae (Diptera, Zuckmücken)		L	111	1			1,3
Antocha sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)		L	1	1			1,3
Dicranota sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)		L	1	1			1,3
Simulium (Wilhelmia) sp.	Simuliidae (Diptera, Kriebelmücke)		L	1	5			3
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)		L	4	1			1,3
Tabanidae [Fam] Gen. sp.	Tabanidae (Diptera, Zweiflügler)		L	1	5			3

AquaPlus AG Rietaach / OGB237

cf: conferre, Bestimmung unklar. S: Stadium mit Ei = Ei, Gelege, Ex = Exuvie, ImL = Imago-Land, ImW = Imago-Wasser, juv = juvenil, K = Kokon, L = Larve, LL = Larve-Land, P = Puppe, Sim = Subimago. Zusatzangabe Geschlecht m = männlich, w = weiblich. Die Stadien Ex, ImL, LL und Sim werden bei den Indexberechnungen wie Taxazahl, Diversität, Gesamtindividuendichte, Makroindex, etc. nicht berücksichtigt. IND: Individuendichte pro 0.1m²., k.A. = keine Angabe möglich.

QS: Qualitätsstufe des angegebenen Zählwertes mit 1 = Taxon gezählt (Surber), 2 = Taxon gezählt (Kick), 3 = Taxon mit HK geschätzt, 4 = Taxon mit AK geschätzt, 5 = ergänzendes Taxon ohne Dichteangabe (1 = Standard). !: Der Originalzählwert des Taxon wird für die gewählte Auswertungsmethode mit einem angenäherten Wert

angegeben.

Neoz.: Neozoen, fremde Arten. RL: rote Liste Arten mit EX/RE = ausgestorben, CR = vom Aussterben bedroht, EN = stark gefährdet, VU = gefährdet bzw. verletzlich, NT = potentiell gefährdet, LC = nicht gefährdet, DD = ungenügende Datenlage.

Rietaach / OGB237 AquaPlus AG

Aufnahme Biologie Fliessgewässer

Fliessgewässer SG 2015 RBK Rietaach

Gewässer	Rie
Probenahmestelle	OG
Koordinaten	762
Datum	13.
Witterung Probenahme	sor

Rietaach	Gemein
OGB201	Ortsbez
762250 / 249670	Meeresi
13.03.2015	Zeit
sonnig	Witteru
AquaPlus AG - Hürlimann-Rag	az Joachim

Gemeinde, Kantor
Ortsbezeichnung
Meereshöhe
Zeit
Witterung Vortage

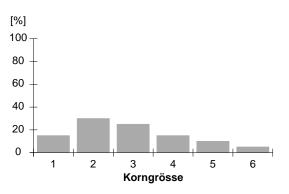
Marbach, SG
Anger
411
11.15 Uhr
sonnig

Hydrologische Angaben

BearbeiterIn Feld

Gewässertyp	Bach
mittleres Gefälle [%]	0.3
natürlicher Abflussregimetyp	nivo-pluvial préalpin
Wasserführung	ständig
Grösse Einzugsgebiet [km²]	33
Art Einzugsgebiet [%]	Wald 45%, Landwirtschaft 45%, Siedlungsgebiet 10%
Nutzung	Vorfluter ARA

Foto


Kolmation Kolmation

Skala BAFU Modul Äusserer Aspekt: keine, mittel/leicht, stark Skala AquaPlus: keine oder nur sehr geringe, deutlich spürbare, starke, sehr starke

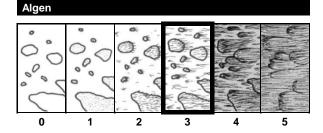
stark (anthropogen)

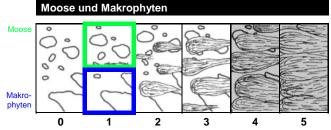
Blick aufwärts.

Korngrössenverteilung

Korngrössen: 1 = anstehender Fels und grösseres Gerölle; 2 = kopfgrosses Gerölle; 3 = Grobkies (faust- bis nussgross); 4 = Feinkies (nuss- bis erbsengross); 5 = Sand; 6 = Feinsand und Silt.

Uferbeschaffenheit


	links	rechts
Beurteilung Uferbereich	gewässerfremd	gewässerfremd
Ufertyp/Vegetation		Bäume/Sträucher standortfremd
	Fettwiese	
Durchflossene Landschaft, näh. Einzugsgebiet (Anteil)	Landwirtschaft (gross)	Landwirtschaft (gross)
Verbauung Böschungsfuss	durchlässig, verbaut	durchlässig, verbaut
Verbauungstyp Böschungsfuss	Natursteine dicht	Natursteine dicht

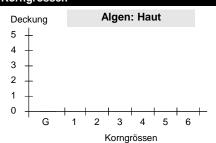

vorhandene Choriotope

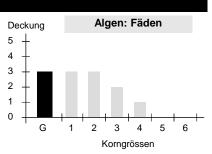
Choriotop (sortiert nach Häufigkeit)	Häufigkeit
Mikrolithal (Grobkies, 2-6.3 cm)	häufig (11-50%)
Makrolithal (grosse Steine, 20-40 cm)	häufig (11-50%)
Mesolithal (Grobschotter, 6.3-20 cm)	häufig (11-50%)
Megalithal (Fels, Steinblöcke > 40 cm)	mittel (5-10%)

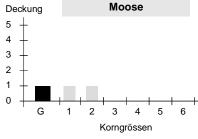
Äusserer Aspekt anthropogene Trübung mittlere STARKE keine geringe anthropogene Verfärbung keine leichte **MITTLERE** starke KEIN mittel stark gering anthropogener Schaum (stabil) kein WENIG mittel viel anthropogene Verschlammung leichte MITTLERE keine starke anthropogene makroskopisch sichtbare Pilze / keine wenig mittel Bakterien / Protozoen EINZEL anthropogene Eisensulfid-Flecken (Häufigkeit) 1-10% 10-25% >25% Feststoffe aus Siedlungsentwässerung KEINE mittel viel wenige Abfälle KEINE mittel viele wenige

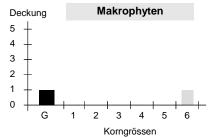
Pflanzlicher Bewuchs

- 0 = kein Bewuchs, 1 = Krustenalgen, deutliche Überzüge ohne Zotten,
- 2 = Ansätze von Fäden und Zotten, 3 = gut ausgebildete Fäden und Zotten, 4 = Gewässersohle zum grössten Teil mit Algen bedeckt, alle Steine überzogen,
- 5 = ganzer Bachgrund mit Algen bedeckt, Konturen der Steine nicht mehr sichtbar. Abgeändert nach: THOMAS & SCHANZ (1976)

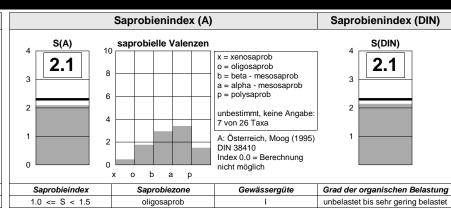

0 = frei von Bewuchs, 1 = 1-10% der Gewässersohle bedeckt, 2 = 11-25%3 = 26-50%, 4 = 51-75%, 5 = 76-100%. Abgeändert nach: THOMAS & SCHANZ


Artenliste (dominante Formen)


Alg	gen	Sub				Dec	kun	g		Max. L	Moose / Makrophyten	Sub			[Deck	kunç	g		Max. L
			Ges		Ko	rng	röss	sen		bzw.			Ges		Ko	rngı	röss	en		bzw.
W				1	2	3	4	5	6	Häuf.				1	2	3	4	5	6	Häuf.
K	Cyanophyceae (Blaualge)	S	1	1	1	1	0	0	0		Fontinalis antipyretica (Moos)	S	1	1	1	0	0	0	0	<=10
K	Bacillariophyceae (Kieselalgen)	S	2	2	2	2	1	0	0		Myriophyllum spicatum (Tausendblatt)	S	1	0	0	0	0	0	1	0
F	Vaucheria sp. (Gelbgrünalge)	S	3	3	3	2	1	0	0	<=5										
F	Cladophora sp. (Grünalge)	S	1	1	1	0	0	0	0	<=5										


Tabellenwerte in Deckungs-Kategorien: 0 = frei von Bewuchs; 1 = 1-10% bedeckt; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Ges = Gesamtdeckung der Gewässersohle durch die betreffende Art. Korngrössen 1-6: Legende siehe unter "Korngrössenverteilung". W = Wuchsform: K = Kruste; H = Haut; F = Fäden (inkl. Kolonien oder Bänder von Diatomeen und Schläuche von z.B. Hydrurus foetidus); E = Epiphyten; Sub = Substrat; S = Stein; H = Holz; SI = Schlamm; A = Algen; M = Moose und Makrophyten. Max. L = Maximale Fadenlänge [cm]; Häuf. = Häufigkeit der Epiphyten: o = vereinzelt; oo = wenige; ooo = häufig; oooo = massenhaft.

Pflanzlicher Bewuchs auf den einzelnen Korngrössen Algen: Krusten Deckung 5 4 3 2 1 G 2 5 6 3 4 Korngrössen



Deckung 0 = frei von Bewuchs, 1 = 1-10% bedeckt, 2 = 11-25%, 3 = 26-50%, 4 = 51-75%, 5 = 76-100%. G = Gesamtdeckung der Gewässersohle (alle Korngrössen). Korngrössen: 1-6 = Legende siehe unter "Korngrössenverteilung".

AquaPlus AG Rietaach / OGB201

Makroindex	Ökol. Zustand	IBCH-Index
1 - 2	sehr gut	17 - 20
3	gut	13 - 16
4	mässig	9 - 12
5-6	unbefriedigend	5 - 8
7-8	schlecht	0 - 4
	· ·	

	3.5 <= S < 4.0	polysapro	polysaprob		IV	übermässig verschmutzt		
Beprobte Choriotope	Fliessges. m/s	Häufigkeit	Anzahl S	Surber-P	Anzahl Kick-P	Abgelesen X	Rohprobe	
Makrolithal (grosse Steine, 20-40 cm)	1.5 - 0.75	häufig (11-50%)	1		0	0	1	
Makrolithal (grosse Steine, 20-40 cm)	0.75 - 0.25	häufig (11-50%)	C)	1	0	3	
Makrolithal (grosse Steine, 20-40 cm)	0.75 - 0.25	häufig (11-50%)	1		0	0	1	
Mesolithal (Grobschotter, 6.3-20 cm)	0.75 - 0.25	häufig (11-50%)	C)	1	0	3	
Mikrolithal (Grobkies, 2-6.3 cm)	0.75 - 0.25	häufig (11-50%)	1		0	0	1	
Mikrolithal (Grobkies, 2-6.3 cm)	0.25 - 0.05	häufig (11-50%)	C)	1	0	3	
Megalithal (Fels, Steinblöcke > 40 cm)	0.75 - 0.25	mittel (5-10%)	C)	1	0	3	
Megalithal (Fels, Steinblöcke > 40 cm)	0.25 - 0.05	mittel (5-10%)	0)	1	0	3	

oligo-beta-mesosaprob

beta-mesosaprob

beta-alpha-mesosaprob

alpha-mesosaprob

alpha-meso-polysaprob

1.5 <= S < 1.8

1.8 <= S < 2.3 2.3 <= S < 2.7

2.7 <= S < 3.2

3.2 <= S < 3.5

Taxazahl	26	Gesamt- häufigkeit [Ind./0.1m ²]	1600	←	Individue
Diversität	3.20	Nassgew. [g/0.1m ²]	0.58		

endichte, IND

I - II

II - III

Ш

III - IV

gering belastet

mässig belastet

kritisch belastet

stark verschmutzt

sehr stark verschmutzt

< 5 Ind./0.1m² = äusserst gering, 6 - 25 = sehr gering, 26 - 100 = gering, 101 - 500 = mittel, 501 - 2'500 = mittel bis gross, 2'501 - 5'000 = gross, > 5'000 = sehr gross. IND = auf ganze Zahlen aufgerundete Dichtewerte

Taxa aus Proben von seltenen Choriotopen gehen ohne Individuendichte in die Taxaliste ein.

				Y				
Taxaliste der Rohprobe 1 und Erg	änzungen aus Probe 3	cf	S	IND	QS	Neoz.	RL	Probe
Eiseniella tetraedra (SAVIGNY, 1826)	Lumbricidae (Oligochaeta, Wenigborster)			1	1			1
Oligochaeta [KI]	Oligochaeta [KI] (Oligochaeta, Wenigborster)			60	1			1,3
Hydracarina [Fam]	Hydracarina (Arachnida, Wassermilbe)			17	1			1
Baetidae [Fam]	Baetidae (Ephemeroptera, Eintagsfliege)		L	153	1			1,3
Baetis alpinus PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	1	5			3
Baetis rhodani PICTET, 1843	Baetidae (Ephemeroptera, Eintagsfliege)		L	53	1			1,3
Caenis sp. STEPHENS, 1835	Caenidae (Ephemeroptera, Eintagsfliege)		L	91	1			1,3
Elmidae [Fam]	Elmidae (Coleoptera, Käfer)		L	30	1			1
Elmis sp.	Elmidae (Coleoptera, Käfer)		L	16	1			1,3
Limnius sp.	Elmidae (Coleoptera, Käfer)		L	1	1			1
Riolus sp.	Elmidae (Coleoptera, Käfer)		L	1	5			3
Hydropsyche siltalai DÖHLER, 1963	Hydropsychidae (Trichoptera, Köcherfliege)		L	1	5			3
Hydropsyche sp.	Hydropsychidae (Trichoptera, Köcherfliege)		L	39	1			1,3
Rhyacophila s.str. sp.	Rhyacophilidae (Trichoptera, Köcherfliege)		Р	1	5			3
Atherix ibis (FABRICIUS, 1798)	Athericidae (Diptera, Zweiflügler)		L	1	1			1
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)		L	211	1			1,3
Chironomidae [Fam]	Chironomidae (Diptera, Zuckmücken)		Р	15	1			1
Chironomini [Tribus]	Chironomidae (Diptera, Zuckmücken)		L	63	1			1,3
Tanypodinae [UFam] Gen. sp.	Chironomidae (Diptera, Zuckmücken)		L	130	1			1,3
Tanytarsini [Tribus] Gen. sp.	Chironomidae (Diptera, Zuckmücken)		L	381	1			1,3
Hemerodromia sp.	Empididae (Diptera, Zweiflügler)		L	1	1			1
Antocha sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)		L	1	1			1,3
Dicranota sp.	Limoniidae/Pediciidae (Diptera, Zweiflügler)		L	15	1			1
Simulium (Wilhelmia) sp.	Simuliidae (Diptera, Kriebelmücke)		L	1	1			1,3
Simulium sp.	Simuliidae (Diptera, Kriebelmücke)		L	320	1			1,3
Beris sp.	Stratiomyidae (Diptera, Zweiflügler)		L	1	5			3
Tabanidae [Fam] Gen. sp.	Tabanidae (Diptera, Zweiflügler)		L	1	1			1

AquaPlus AG Rietaach / OGB201 13.03.2015 cf: conferre, Bestimmung unklar. S: Stadium mit Ei = Ei, Gelege, Ex = Exuvie, ImL = Imago-Land, ImW = Imago-Wasser, juv = juvenil, K = Kokon, L = Larve, LL = Larve-Land, P = Puppe, Sim = Subimago. Zusatzangabe Geschlecht m = männlich, w = weiblich. Die Stadien Ex, ImL, LL und Sim werden bei den Indexberechnungen wie Taxazahl, Diversität, Gesamtindividuendichte, Makroindex, etc. nicht berücksichtigt. IND: Individuendichte pro 0.1m²., k.A. = keine Angabe möglich.

QS: Qualitätsstufe des angegebenen Zählwertes mit 1 = Taxon gezählt (Surber), 2 = Taxon gezählt (Kick), 3 = Taxon mit HK geschätzt, 4 = Taxon mit AK geschätzt, 5 = ergänzendes Taxon ohne Dichteangabe (1 = Standard). !: Der Originalzählwert des Taxon wird für die gewählte Auswertungsmethode mit einem angenäherten Wert

angegeben.

Neoz.: Neozoen, fremde Arten. RL: rote Liste Arten mit EX/RE = ausgestorben, CR = vom Aussterben bedroht, EN = stark gefährdet, VU = gefährdet bzw. verletzlich, NT = potentiell gefährdet, LC = nicht gefährdet, DD = ungenügende Datenlage.

Rietaach / OGB201 AquaPlus AG

ANHANG B

Unterschungsmethodik

Untersuchungsprogramm und Methoden

Für die biologisch-ökologischen Untersuchungen wurden pro Stelle eine Probenahme am 29. September 2014 durchgeführt. Die erhobenen Daten sind im Anhang A (Stellendokumentation) aufgeführt. Im Folgenden werden die Untersuchungsparameter und Methoden erläutert.

Äusserer Aspekt

Zur Beschreibung des makroskopischen Gewässereindruckes (Äusserer Aspekt) wurden die in Tabelle B.1 aufgeführten Parameter gemäss einer vierstufigen Skala beurteilt. Wird an einer Probenahmestelle eine Trübung, eine Verfärbung, einen Geruch, Schaum oder eine Verschlammung festgestellt, wird versucht zu unterscheiden, ob es sich um natürliche, anthropogen bedingte oder unbekannte Verhältnisse handelt. Die Bewertung des Äusseren Aspektes erfolgt gemäss Modul Äusserer Aspekt (BAFU 2007a) mit drei Zustandsklassen.

Tab. B.1. Äusserer Aspekt und die Einteilung in 3 Zustandsklassen (Modul-Stufe Äusserer Aspekt, BAFU 2007a).

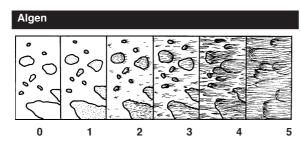
Zustandsklasse 1	= Anforderungen GSchV Anhang 2 erfüllt.
Zustandsklasse 2	= Anforderungen GSchV Anhang 2 fraglich erfüllt.
Zustandsklasse 3	= Anforderungen GSchV Anhang 2 nicht erfüllt.

Trübung		keine	geringe	mittlere	starke	
Verfärbung				leichte	mittlere	starke
Geruch (Abwasser , Gülle)	Beurteilung der Ursache	kein	gering	mittel	stark	
Schaum (stabil)	pro Parameter:	kein	wenig	mittel	viel	
Verschlammung		keine	leichte	mittlere	starke	
Makroskopisch sichtbare Pilze, Bakterien oder Protozo- en	natürlich anthropogen unbekannt	keine	vereinzelt	wenig (von 10 Steinen 1-5 mit Kolonien)	häufig (von 10 Steinen >5 mit Kolonien)	
Eisensulfid-Flecken (Fundhäufigkeit)		0 %	1-10%	10-30%	>30%	
Feststoffe aus Siedlungsentwä	keine	wenige	mittel	viel		

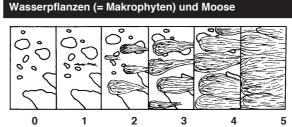
Quantitative und qualitative Erfassung der Flora der Gewässersohle (Algen, Moose und Makrophyten)

Makroskopische Beurteilung im Feld

- Bewuchsdichte-Schätzung gemäss der sechsstufigen Bildskala von THOMAS & SCHANZ (1976, siehe Tabelle 3.2, Änderung: Stufen 0 5 anstatt 1 6). Diese Dichte-Schätzung wurde aufgrund des allgemeinen Eindruckes unabhängig von der Korngrössenverteilung vorgenommen.
- Unterscheidung zwischen fädigen, haut- und krustenbildenden Algen und Schätzung ihrer Deckung bezüglich der gesamten Gewässersohle in Prozent sowie Schätzung ihrer Deckung auf den einzelnen Substratklassen (Korngrössenstufen 1 bis 6) in Prozent der entsprechenden Teilflächen.
- Unterscheidung von im Feld leicht erkennbaren Arten (z.B. *Cladophora* sp.; *Hydrurus foetidus*) oder Artgruppen (z.B. Kieselalgen oder Grünalgen) und Schätzung ihrer Deckung bezüglich der gesamten Gewässersohle sowie Schätzung ihrer Deckung auf den einzelnen Substratklassen (Korngrössenstufen 1 bis 6) in Prozent der entsprechenden Teilflächen.
- Schätzung der Deckung für Moose und Wasserpflanzen entsprechend dem Vorgehen bei den Algen.


Probenahme

Algen, Moose und Wasserpflanzen bestimmten wir soweit möglich im Feld; bei Unklarheiten wurden zur mikroskopischen Verifizierung der Art Proben mit ins Labor genommen.


Auswertung, Bewertung

Der pflanzliche Bewuchs wird verbal besprochen. Es erfolgt aber gemäss Modul-Stufe F Äusserer Aspekt (BAFU 2007a) keine Bewertung des pflanzlichen Bewuchses.

Tab. B.2. Bewuchsdichtestufen zur Einschätzung des pflanzlichen Bewuchses, abgeändert nach THOMAS & SCHANZ (1976).

 $0 = \text{frei von Bewuchs}; 1 = 1-10\% \text{ der Gewässersohle bedeckt}; 2 = 11-25%; 3 = 26-50%; 4 = 51-75%; 5 = 76-100%. Abgeändert nach THOMAS & SCHANZ (1976).}$

Quantitative und qualitative Erfassung der Fauna der Gewässersohle (Wasserwirbellose) und Bestimmung der Gewässergüte

Feldarbeit/Pobenahme

Die Probenahme wurde gemäss Modul Zoobenthos (Stufe F, BAFU 2010) durchgeführt. Um die Vergleiche mit den Untersuchungen früherer Jahre zu ermöglichen, wurde wie damals auch mit dem Surber sampler (Maschenweite des Netzes 280 µm, beprobte Fläche pro Surberprobe 30 cm x 30 cm) gearbeitet, so dass Individuendichten ermittelt werden können. Hierzu wurden an drei Stellen 3 Surberproben entnommen und gepoolt (= Rohprobe 1). Da die Probenahme auch dem IBCH-Verfahren genügen musste, wurden zusätzlich gemäss IBCH-Raster weitere fünf Kickproben (25 cm x 25 cm) entnommen und ebenfalls gepoolt (= Rohprobe 3).

In der Stellendokumentation finden sich die für die Untersuchungsstelle relevanten Angaben zur Choriotop-Zusammensetzung sowie zur Probenahme.

Laborarbeit

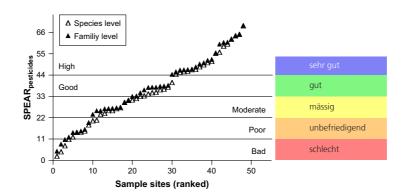
Die Wasserwirbellosen der Surberproben (= dominante und häufige Choriotope, = Rohprobe 1) wurden bestimmt und ausgezählt. Auf diesen Zählresultaten basieren die Auswertungen (Gesamtindividuendichte, Saprobieindex, Diversität, relativen Häufigkeiten, funktionale Gruppen), also so wie dies in den Untersuchungen früherer Jahre auch gemacht wurde. Die Wasserwirbellosen der Rohprobe 3 (Kicksampling) wurden ebenfalls bestimmt und ausgezählt. Sie dienen der Taxaliste und dem Eruieren des IBCH-Wertes.

Auswertung

Die Auswertung der Wasserwirbellosen erfolgte gemäss Modul Zoobenthos (BAFU 2010, IBCH-Verfahren) aber auch mittels anderen Indexberechnungen, so dass die Resultate mit den Untersuchungen früherer Jahre verglichen werden können.

Berechnung des IBCH-Wertes

Zur Berechnung des IBCH-Wertes wurden die absoluten Individuenzahlen der Rohprobe 1 (3 Surberproben) und 3 (5 Kickproben) auf Niveau der Familien addiert und daraus für jede Familie die Abundanzklasse sowie der IBCH-Wert gemäss Vorgaben des BAFU (2010) eruiert.


SPEAR_{pesticide}-Index

Der SPEAR-Index ist eine einfache Berechnungsmethode zum Screening von mit Pestiziden belasteten Probestellen. Er kann basierend auf bestehenden biologischen Routinemonitoringdaten des Makrozoobenthos errechnet werden. In den SPEAR-Index fliessen sowohl biologische (z.B. Generationszeit, aquatische Lebensweise aller Entwicklungsstadien und Vorhandensein während Hauptapplikationszeit), ökologische (z.B. Migrationsfähigkeit, Rekolonisierungspotential) als auch ökotoxikologische Daten (relative Toxizität gegenüber *Daphnia spp.*) ein. Dazu wurden viele Makrozoobenthosarten hinsichtlich dieser Kriterien bewertet und entweder als «at risk» (1) oder «not at risk» (0) eingestuft.

In der Berechnung wird die abundanzkorrigierte Summe der sensitiven Arten durch die korrigierte Gesamtabundanz geteilt:

Die Berechnung des SPEAR-Index basierte unter Benützung des online-Rechners, welcher sich auf der Website 'www.systemecology.eu/SPEAR/index.php' befindet.

Die Einstufung in Zustandsklassen orientiert sich an der vorgeschlagenen Skala nach BEKETOV et al. 2009:

Bewertung

Die Bewertung erfolgt in erster Linie basierend auf dem IBCH-Wert (BAFU 2010).